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Introducción 
En el presente año 2025 se conmemora, quizás con pocas ce-
lebraciones, el 200 aniversario del descubrimiento de la molé-
cula de benceno por Michael Faraday.[1] La importancia de la 
molécula de benceno en el desarrollo de la química básica y 
fundamental (i.e., compresión del enlace químico entre átomos) 
y en química aplicada es incuestionable. Por ello, el presente 
número de la revista Anales de Química va a subrayar aspectos 
de actual relevancia del benceno y de sus herederos en su 200 
“cumpleaños”. Simultáneamente, en este año 2025, también se 
celebra el 100 aniversario del “descubrimiento” de la Mecá-
nica Cuántica que sitúa dicho hito en la presentación de la 
ecuación de Schrödinger revelada por Erwin Schrödinger en 
el histórico año de 1925.[2] Por tales motivos, Naciones Unidas 
proclamó el año 2025 como el Año Internacional de la Ciencia 
y las Tecnologías Cuánticas (IYQ). [3]  

Esta encrucijada de fechas (Figura 1) me ha hecho reflexio-
nar sobre la relevancia que tuvo, ha tenido y tiene la Química 
en el desarrollo de la Mecánica Cuántica. Esta reflexión está 
alimentada por la personal impresión del escaso papel de la 
Química Cuántica en las celebraciones del IYQ. A riesgo de 
estar equivocado en esta afirmación, revelándola en positivo, 

me lleva a dejar las tareas más cotidianas en Química Física y 
centrarme en describir el papel de la Química en la Mecánica 
Cuántica, y nada mejor que tomar el benceno como sustrato 
reconociblemente químico sobre el que evaluar y destacar el 
papel único de la Química Cuántica. Los hitos que se destacan 
a continuación son los más relevantes en opinión del autor, por 
ello, ya disculpo por adelantado la inintencionada omisión de 
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Introducción  
En el presente año 2025 se conmemora, quizás con pocas 
celebraciones, el 200 aniversario del descubrimiento de la 
molécula de benceno por Michael Faraday.[1] La importancia 
de la molécula de benceno en el desarrollo de la química 
básica y fundamental (i.e., compresión del enlace químico 
entre átomos) y en química aplicada es incuestionable. Por 
ello, el presente número de la revista Anales de Química va 
a subrayar aspectos de actual relevancia del benceno y de 
sus herederos en su 200 “cumpleaños”. Simultáneamente, 
en este año 2025, también se celebra el 100 aniversario del 
“descubrimiento” de la Mecánica Cuántica que sitúa dicho 
hito en la presentación de la ecuación de Schrödinger reve-
lada por Erwin Schrödinger en el histórico año de 1925.[2] Por 
tales motivos, Naciones Unidas proclamó el año 2025 como 
el Año Internacional de la Ciencia y las Tecnologías Cuánti-
cas (IYQ). [3]   

Esta encrucijada de fechas me ha hecho reflexionar 
sobre la relevancia que tuvo, ha tenido y tiene la Química en 
el desarrollo de la Mecánica Cuántica. Esta reflexión está ali-
mentada por la personal impresión del escaso papel de la 
Química Cuántica en las celebraciones del IYQ. A riesgo de 
estar equivocado en esta afirmación, revelándola en posi-
tivo, me lleva a dejar las tareas más cotidianas en Química 
Física y centrarme en describir el papel de la Química en la 
Mecánica Cuántica, y nada mejor que tomar el benceno 
como sustrato reconociblemente químico sobre el que eva-
luar y destacar el papel único de la Química Cuántica. Los 

hitos que se destacan a continuación son los más relevantes 
en opinión del autor, por ello, ya disculpo por adelantado la 
inintencionada omisión de otros ejemplos que seguramente 
serán igual de pertinentes. En resumen, en este artículo se 
describe el papel fundamental de la Química Cuántica en la 
Mecánica Cuántica y se reclama su papel en los eventos que 
la Física celebra en este IYQ 2025.  

 

 
Figura 1. Logo del “International Year of Quantum Science and Te-
chnology” conmemorando el descubrimiento de la ecuación de 
Schrödinger en 1925 (publicada en 1926) junto a la muestra de ben-
ceno destilada por Faraday del aceite de ballena en 1825 (se mues-
tra en la Royal Society of Chemistry en Londres). Faraday nombra a 
este desconocido compuesto como “bicarburet of hydrogen”; poste-
riormente, Eilhard Mitscherlich en 1933 acuña el nombre de “ben-
ceno”.  

 
Animado por esta situación, y dicho sea de paso, todo 

catalizado por el profesor Nazario Martín León, incombusti-
ble motor de una parte de la mejor química de moléculas 
aromáticas basadas en benceno que se hace en España, me 
propongo describir los hitos de la Mecánica Cuántica relacio-
nados con la molécula de benceno. La combinación de 

1925- 2025 1825- -2025
bicarburet

of hydrogen

M. Faraday
Philisophical Transactions, 1825, 115, 440

E. Schrödinger
Ann. Phys. 1926 79, 361 (des. 1925)  

Figura 1. Logo del “International Year of Quantum Science and 
Technology” conmemorando el descubrimiento de la ecuación de 
Schrödinger en 1925 (publicada en 1926) junto a la muestra de 
benceno destilada por Faraday del aceite de ballena en 1825 

(se muestra en la Royal Society of Chemistry en Londres). Faraday 
nombra a este desconocido compuesto como “bicarburet of 

hydrogen”; posteriormente, Eilhard Mitscherlich en 1933 acuña el 
nombre de “benceno”.
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otros ejemplos que seguramente serán igual de pertinentes. En 
resumen, en este artículo se describe el papel fundamental de 
la Química Cuántica en la Mecánica Cuántica y se reclama su 
papel en los eventos que la Física celebra en este IYQ 2025. 

Animado por esta situación, y dicho sea de paso, todo ca-
talizado por el profesor Nazario Martín León, incombustible 
motor de una parte de la mejor química de moléculas aromáti-
cas basadas en benceno que se hace en España, me propongo 
describir los hitos de la Mecánica Cuántica relacionados con 
la molécula de benceno. La combinación de Química Cuánti-
ca y benceno ha permitido un profundo conocimiento de las 
propiedades energéticas y electrónicas del mismo; y, visto de 
otro modo, los estudios cuánticos sobre el benceno han apor-
tado significativamente al desarrollo de la Química Cuántica. 
A continuación, se presentan los datos desde un punto de vista 
“cualitativo” (i.e., en muchos casos también se muestran las ex-
presiones analíticas de las funciones de onda pertinentes) con 
énfasis en establecer una secuencia conductora, conceptual y 
temporal, entre los diversos ejemplos. 

1. Las primeras aplicaciones de la Mecánica Cuántica sobre 
sistemas químicos o moléculas
El primer cálculo mecano-cuántico sobre una molécula lo reali-
za el físico danés Øyvind Burrau en 1927 considerando el ion 
positivo de la molécula de hidrógeno, H2

+.[4] La resolución de la 
ecuación de Schrödinger en coordenadas elípticas confocales 
del H2

+ proporciona soluciones exactas, pero poco o nada intui-
tivas. Alternativamente, se desarrolla la metodología de resolu-
ción aproximada de la ecuación de Schrödinger para este mis-
mo H2

+ consistente en proponer una solución genérica, tal que 
una combinación lineal de orbitales atómicos (CLOA, del átomo 
de H), y pedirle a la ecuación de Schrödinger que nos propor-
cione la mejor solución de entre todas las de esta forma (mé-
todo variacional). Solemos decir que la solución CLOA es muy 
intuitiva lo cual es lógicamente así pues forzamos a que lo sea. 
La intuición de la solución CLOA radica en que en ésta nos apa-
recen los cambios o evolución de los orbitales atómicos de par-
tida tras la formación de la molécula H2

+, lo que relacionamos 
con la formación del enlace químico. La solución CLOA del H2

+ es 
la primera descripción en Química Cuántica, entendida como 
la aplicación de la Mecánica Cuántica a moléculas. Se deduce 
desde el punto de vista físico que 1 electrón es compartido por 
2 núcleos proporcionando una solución de menor energía que 
la de los átomos por separado. Esta comparación matemática 
es muy sugerente y entronca con la mística de la Mecánica 
Cuántica. En cierta forma, la “imposibilidad” de entender la 
solución exacta y la preferencia por la solución aproximada 
nos indica que la realidad (solución exacta) es muy compleja, 
de modo que nos conformamos o estamos limitados a entender 
una propia proyección de la compleja realidad (nuestra proyec-
ción en forma de una solución combinación lineal). 

Este ejemplo de la solución de H2
+ puede emplearse en 

la enseñanza de la Química Cuántica para destacar cómo el 
nuevo paradigma de la Mecánica Cuántica difiere sustancial-
mente de la interpretación clásica. En Física Clásica, la solución 
electrostática del problema de dos cargas puntuales positivas 
situadas a una distancia dada (fija) y compartiendo una car-
ga negativa puntual proporciona una solución metaestable 
(máximo de energía) para la carga negativa situada a la mitad 
de distancia en el eje entre las cargas positivas. En Mecánica 
Cuántica, el estado físico asimilable es la molécula H2

+ con 1 
electrón compartido entre las dos cargas positivas de los nú-
cleos. Aquí, resulta que la interpretación probabilística y ondu-
latoria de la función de onda hace que dicho estado (electrón 

compartido por los dos núcleos sobre el eje entre ellos) sea un 
mínimo absoluto de energía y, por ello, perpetuamente estable. 
La reflexión de esta comparación clásico-cuántica nos revela 
que la materia del Universo se sostiene gracias a la realidad 
cuántica de la misma.

En 1927, Heitler y London describen la aplicación de la 
Mecánica Cuántica al problema completo del enlace químico 
para la molécula de H2.

[5] Aquí aparece la primera interpreta-
ción del enlace químico entre átomos por la nueva física, ahora 
ya con los ingredientes fundamentales de la nueva teoría cuán-
tica: ecuación de Schrödinger y función de onda y principio de 
exclusión de Pauli.

La primera resolución mecano-cuántica aproximada del 
H2

 se realizan mediante la aplicación de la teoría del enlace 
de valencia, i.e., TEV. Dicha teoría representa la versión me-
cano-cuántica más próxima a las teorías previas del enlace 
químico, fundamentalmente la de Lewis (i.e., los enlaces quí-
micos se forman apareando pares de electrones, ver Figura 2). 
El carácter intuitivo de la TEV es evidente, pues construimos la 
función de onda a partir de pares de electrones agrupados 
según la fórmula estructural de la molécula. La función de onda 
se completa tomando combinaciones lineales de todos estos 
pares (enlaces) de electrones. Todo, conjuntamente, hizo que 
la TEV fuese inicialmente la más utilizada en las soluciones de 
la Mecánica Cuántica al estudio de moléculas. Tal forma de la 
función de onda representa la visión del enlace químico en la 
que el electrón de cada átomo se intercambia con el núcleo 
vecino, “compartiéndose” así los electrones (enlace covalente).

2. Las primeras aplicaciones de la Mecánica Cuántica a la mo-
lécula de benceno
En este contexto de la TEV se propone la aplicación de la me-
cánica cuántica para la resolución de la estructura electrónica 
de la molécula de benceno en 1933.[6,7] Merece la pena men-
cionar con cierto detalle esta primera solución mecano-cuántica 
del benceno realizada con la TEV. 

La función de onda del estado fundamental del benceno en 
la TEV se construye tomando como base las estructuras electró-
nicas propuestas hasta ese año 1933 para la molécula de ben-
ceno y que eran fundamentalmente las estructuras de enlaces 
alternantes de Kékulé y las de Dewar tal, tal y como se repre-
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Química Cuántica y benceno ha permitido un profundo co-
nocimiento de las propiedades energéticas y electrónicas del 
mismo; y, visto de otro modo, los estudios cuánticos sobre el 
benceno han aportado significativamente al desarrollo de la 
Química Cuántica. A continuación, se presentan los datos 
desde un punto de vista “cualitativo” (i.e., en muchos casos 
también se muestran las expresiones analíticas de las fun-
ciones de onda pertinentes) con énfasis en establecer una 
secuencia conductora, conceptual y temporal, entre los di-
versos ejemplos.  
 
1. Las primeras aplicaciones de la Mecánica Cuán-
tica sobre sistemas químicos o moléculas.  
El primer cálculo mecano-cuántico sobre una molécula lo 
realiza el físico danés Øyvind Burrau en 1927 considerando 
el ion positivo de la molécula de hidrógeno, H2+.[4] La resolu-
ción de la ecuación de Schrödinger en coordenadas elípticas 
confocales del H2+ proporciona soluciones exactas, pero 
poco o nada intuitivas. Alternativamente, se desarrolla la me-
todología de resolución aproximada de la ecuación de 
Schrödinger para este mismo H2+ consistente en proponer 
una solución genérica, tal que una combinación lineal de or-
bitales atómicos (CLOA, del átomo de H), y pedirle a la ecua-
ción de Schrödinger que nos proporcione la mejor solución 
de entre todas las de esta forma (método variacional). Sole-
mos decir que la solución CLOA es muy intuitiva lo cual es 
lógicamente así pues forzamos a que lo sea. La intuición de 
la solución CLOA radica en que en ésta nos aparecen los 
cambios o evolución de los orbitales atómicos de partida tras 
la formación de la molécula H2+, lo que relacionamos con la 
formación del enlace químico. La solución CLOA del H2+ es 
la primera descripción en Química Cuántica, entendida como 
la aplicación de la Mecánica Cuántica a moléculas. Se de-
duce desde el punto de vista físico que 1 electrón es com-
partido por 2 núcleos proporcionando una solución de menor 
energía que la de los átomos por separado. Esta compara-
ción matemática es muy sugerente y entronca con la mística 
de la Mecánica Cuántica. En cierta forma, la “imposibilidad” 
de entender la solución exacta y la preferencia por la solu-
ción aproximada nos indica que la realidad (solución exacta) 
es muy compleja, de modo que nos conformamos o estamos 
limitados a entender una propia proyección de la compleja 
realidad (nuestra proyección en forma de una solución com-
binación lineal).  

Este ejemplo de la solución de H2+ puede emplearse en 
la enseñanza de la Química Cuántica para destacar cómo el 
nuevo paradigma de la Mecánica Cuántica difiere sustancial-
mente de la interpretación clásica. En Física Clásica, la so-
lución electrostática del problema de dos cargas puntuales 
positivas situadas a una distancia dada (fija) y compartiendo 
una carga negativa puntual proporciona una solución me-
taestable (máximo de energía) para la carga negativa si-
tuada a la mitad de distancia en el eje entre las cargas posi-
tivas. En Mecánica Cuántica, el estado físico asimilable es la 
molécula H2+ con 1 electrón compartido entre las dos cargas 
positivas de los núcleos. Aquí, resulta que la interpretación 
probabilística y ondulatoria de la función de onda hace que 
dicho estado (electrón compartido por los dos núcleos sobre 
el eje entre ellos) sea un mínimo absoluto de energía y, por 
ello, perpetuamente estable. La reflexión de esta compara-
ción clásico-cuántica nos revela reconfirma que la materia 
del Universo se sostiene gracias a la realidad cuántica de la 
misma. 

En 1927, Heitler y London describen la aplicación de la 
Mecánica Cuántica al problema completo del enlace químico 
para la molécula de H2.[5] Aquí aparece la primera interpre-
tación del enlace químico entre átomos por la nueva física, 
ahora ya con los ingredientes fundamentales de la nueva 

teoría cuántica: ecuación de Schrödinger y función de onda 
y principio de exclusión de Pauli. 

La primera resolución mecano-cuántica aproximada del 
H2 se realizan mediante la aplicación de la teoría del enlace 
de valencia, i.e., TEV. Dicha teoría representa la versión me-
cano-cuántica más próxima a las teorías previas del enlace 
químico, fundamentalmente la de Lewis (i.e., los enlaces quí-
micos se forman apareando pares de electrones, ver Figura 
2). El carácter intuitivo de la TEV es evidente, pues construi-
mos la función de onda a partir de pares de electrones agru-
pados según la fórmula estructural de la molécula. La función 
de onda se completa tomando combinaciones lineales de to-
dos estos pares (enlaces) de electrones. Todo, conjunta-
mente, hizo que la TEV fuese inicialmente la más utilizada 
en las soluciones de la Mecánica Cuántica al estudio de mo-
léculas. Tal forma de la función de onda representa la visión 
del enlace químico en la que el electrón de cada átomo se 
intercambia con el núcleo vecino, “compartiéndose” así los 
electrones (enlace covalente). 

Figura 2. Fórmula estructural (estructura de Lewis) de la molécula 
de H2 definiéndose un enlace químico sencillo entre los dos átomos 
de hidrógeno. Función de onda en la teoría del enlace de valencia 
para la molécula de H2 a partir de las funciones de onda de los orbi-
tales 1s del átomo de hidrógeno (1 y 2). Así cada enlace químico 
(de Lewis) se convierte en una función de onda tal como se muestra 
en el H2. También se indica la solución de la Teoría de Orbitales 
Moleculares que supone una combinación lineal directa de los orbi-
tales atómicos 1s de cada átomo de hidrógeno. Funciones de onda 
sin normalizar. 
 
2. Las primeras aplicaciones de la Mecánica Cuán-
tica a la molécula de benceno.  
En este contexto de la TEV se propone la aplicación de la 
mecánica cuántica para la resolución de la estructura elec-
trónica de la molécula de benceno en 1933.[6] Merece la 
pena mencionar con cierto detalle esta primera solución me-
cano-cuántica del benceno realizada con la TEV.  

La función de onda del estado fundamental del benceno 
en la TEV se construye tomando como base las estructuras 
electrónicas propuestas hasta ese año 1933 para la molé-
cula de benceno y que eran fundamentalmente las estructu-
ras de enlaces alternantes de Kékulé y las de Dewar tal, tal 
y como se representan en la Figura 3 (i.e., en esta figura 
también se representan otras estructuras propuestas poste-
riormente y denominadas iónicas). Esta función de onda pro-
puesta parte de la separación de los electrones  de los elec-
trones , reteniendo sólo las contribuciones de los 6 orbitales 
pz, uno de cada átomo.  

La función de onda mecano-cuántica proporcionada (i.e., 
los coeficientes que aparecen en la función de onda pro-
puesta) por la descripción TEV del benceno en su estado 
fundamental muestra que los coeficientes de las estructuras 
de Kekulé (i.e., con enlaces dobles y simples alternantes) 
son los mayores y además son iguales. Esto indica que el 
peso de ambas estructuras es idéntico y, por tanto, no dife-
renciables. Pauling interpreta este hecho como que la es-
tructura compuesta de ambas formas de Kekulé es una 

H H
1 2

c1 (12-12)c=

Estructura de Lewis

H H
1 2

1 2

c1 1+c2 2F=

Átomos de hidrógeno

Teoría enlace de valencia Teoría de orbitales moleculares

F=  ei k R` CA A(r-R ) +  ei k R` CB B(r-R ) 
R` R` 

Figura 2. Fórmula estructural (estructura de Lewis) de la molécula de 
H2 definiéndose un enlace químico sencillo entre los dos átomos 

de hidrógeno. Función de onda en la teoría del enlace de valencia 
para la molécula de H2 a partir de las funciones de onda de los 
orbitales 1s del átomo de hidrógeno (f1 y f2). Así cada enlace 

químico (de Lewis) se convierte en una función de onda tal como 
se muestra en el H2. También se indica la solución de la Teoría 
de Orbitales Moleculares que supone una combinación lineal 

directa de los orbitales atómicos 1s de cada átomo de hidrógeno. 
Funciones de onda sin normalizar.
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sentan en la Figura 3 (i.e., en esta figura también se represen-
tan otras estructuras propuestas posteriormente y denominadas 
iónicas). Esta función de onda propuesta parte de la separación 
de los electrones π de los electrones σ, reteniendo sólo las con-
tribuciones de los 6 orbitales pz, uno de cada átomo. 

La función de onda mecano-cuántica proporcionada (i.e., 
los coeficientes que aparecen en la función de onda propuesta) 
por la descripción TEV del benceno en su estado fundamental 
muestra que los coeficientes de las estructuras de Kekulé (i.e., 
con enlaces dobles y simples alternantes) son los mayores y 
además iguales. Esto indica que el peso de ambas estructuras 
es idéntico y, por tanto, no diferenciables. Pauling interpreta 
este hecho como que la estructura compuesta de ambas formas 
de Kekulé es una solución de menor energía que las estructuras 
de Kekulé por separado (i.e., teoría de variaciones) abriendo 
paso a la aparición del concepto de resonancia (híbridos de 
resonancia).[6] Esta nueva interpretación supera la existente, 
propuesta por Kekulé, y en la que las dos formas con enlaces 
dobles y simples alternantes se intercambiaban rápidamente 
dando lugar a una estructura intermedia dinámicamente en 
equilibrio en la que todos los enlaces CC son idénticos. La so-
lución de la función de onda TEV del benceno ahora establece 
que ambas son indistinguibles (no se intercambian) resultado de 
que ambas participan con las mismas amplitudes de probabili-
dad; por ello, la estructura final es el resultado de la superposi-
ción mecano-cuántica de ambas formas. 

2. La teoría de Hückel de Orbitales Moleculares aplicada al 
benceno
La entrada de la teoría de orbitales moleculares para describir 
la estructura electrónica del benceno es anterior a la TEV, en 
1931, con el trabajo fundacional de Erich Hückely la aparición 
de la teoría de Hückel de orbitales moleculares, i.e., HMO.[8] 
La teoría HMO se diferencia de la TEV en la función de onda 
de partida que se propone, y que se compone de un orbital 
pz por cada átomo para todos los átomos que contribuyan al 
sistema en cuestión. En el caso del benceno, asumiendo igual-

mente la separación entre electrones s y p, serían 6 orbitales pz 
para 6 átomos (i.e., 6 electrones en total). Por tanto, la función 
de onda de partida no establece ningún requerimiento sobre 
la estructura química de la molécula (solamente el número de 
electrones en orbitales pz); por ejemplo, la función de onda es 
analíticamente igual para benceno que para hexatrieno, ambos 
compuestos de 6 electrones p, tal y como se muestra en la Figu-
ra 4. La conectividad entre átomos que diferencia a hexatrieno 
y benceno se introduce en la forma del determinante secular en 
la Figura 4 (ver coeficientes en rojo en los determinantes res-
pectivos de una y otra molécula). Consecuentemente, la teoría 
HMO, y en general la teoría de orbitales moleculares, adolece 
de la intuición química que se refleja claramente en la TEV al 
construir la función de onda de partida desde los enlaces com-
partidos entre pares de átomos. Dicho de otro modo, mientras 
que los coeficientes c1 y c2 en la función de onda del estado 
fundamental del benceno en la TEV dan cuenta del peso de las 
estructuras de Lewis de Kekule (Figura 3), los coeficientes c1 y c2 
(amplitudes de probabilidad) en las funciones de onda de los 
orbitales moleculares resultantes de la teoría HMO dan cuenta 
del peso de cada orbital atómico en el orbital molecular. 

Con los orbitales moleculares del benceno en la HMO se 
introduce el concepto de orbitales deslocalizados (i.e., función 
de onda electrónica deslocalizada) que da lugar a un nuevo 
paradigma en la teoría químico-cuántica tal que la compren-
sión de la estructura electrónica de moléculas en términos de 
deslocalización electrónica (i.e., la densidad electrónica está re-
partida por los seis átomos de carbono del benceno). 

La aplicación de la teoría HMO al benceno comparada 
con su aplicación al ciclobutadieno resultó explicar la dife-
rencia de estabilidad entre uno (ET=6a+8b) y otro (ET=4a+2b) 
compuesto. A pesar de que ambos tienen formas resonantes 
kekulianas posibles y sus orbitales moleculares son similarmente 
deslocalizados, tal como se muestra en la Figura 5. La teoría 
HMO da cuenta de la mayor estabilidad del benceno frente al 
ciclobutadieno y, de modo general, explica satisfactoriamente 
la particular estabilidad de los compuestos π-cíclicos con un 
numero 4n+2 de electrones respecto a los parientes con 4n 
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Figura 4. Función de onda de partida en la teoría de Hückel de or-
bitales moleculares. La combinación lineal genérica de orbitales ató-
micos pz es común al hexatrieno y benceno. La distinción entre am-
bos compuestos en la HMO aparece en los determinantes seculares 
(ver componentes en rojo) debido a la diferente conectividad entre 
átomos. Se representan pictóricamente las funciones de onda de los 
orbitales ocupados del hexatrieno y benceno, así como sus energías 
según la teoría HMO.   
  

La aplicación de la teoría HMO al benceno comparada 
con su aplicación al ciclobutadieno resultó explicar la dife-
rencia de estabilidad entre uno (ET=6+8) y otro 
(ET=4+2) compuesto. A pesar de que ambos tienen for-
mas resonantes kekulianas posibles y sus orbitales molecu-
lares son similarmente deslocalizados, tal como se muestra 
en la Figura 5.  La teoría HMO da cuenta de la mayor esta-
bilidad del benceno frente al ciclobutadieno y, de modo ge-
neral, explica satisfactoriamente la particular estabilidad de 
los compuestos -cíclicos con un numero 4n+2 de electro-
nes respecto a los parientes con 4n electrones, o aromatici-
dad, en justa referencia a los compuestos aromáticos o ba-
sados en benceno. La particular estabilidad por aromaticidad 
encuentra una justificación intuitiva y lógica dentro del con-
cepto de deslocalización electrónica en teoría de orbitales 
moleculares (mayor deslocalización implica menor confina-
miento electrónico y consecuentemente menor energía o 
mayor estabilidad). Hoy día existe una importante comuni-
dad de químicos dedicados a los estudios de aromaticidad y 
en la definición de índices que den cuenta de ella, entre ellos 
varios índices relacionados con la deslocalización electró-
nica.[8] La panoplia de compuestos orgánicos e inorgánicos 
a los que se le aplica el concepto de aromaticidad para ana-
lizar sus propiedades de estabilidad es, a día de hoy, 
enorme.  
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Figura 3. Estructuras de Lewis más relevantes del benceno, en 
particular, las estructuras de pre-mecano-cuánticas de Kekulé y 

Dewar son claramente intuitivas. Función de onda para el estado 
fundamental de la molécula de benceno según la teoría del enlace 
de valencia primeramente desarrollada por Heitler y London en la 
molécula de H2. Cada función f representa la función de onda de 
un electrón pz del átomo de carbono y éste acompañado de un 
guion en la parte superior indica el espín b (i.e., la ausencia de 

guion representa electrón con espín a). Nótese la correspondencia 
de los coeficientes cn en la descripción cualitativa y cuantitativa de 

la función de onda del benceno.
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Figura 4. Función de onda de partida en la teoría de Hückel 
de orbitales moleculares. La combinación lineal genérica de 
orbitales atómicos pz es común al hexatrieno y benceno. La 

distinción entre ambos compuestos en la HMO aparece en los 
determinantes seculares (ver componentes en rojo) debido a la 

diferente conectividad entre átomos. Se representan pictóricamente 
las funciones de onda de los orbitales ocupados del hexatrieno y 

benceno, así como sus energías según la teoría HMO.

Función de onda de partida en la HMO
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electrones, o aromaticidad, en justa referencia a los compuestos 
aromáticos o basados en benceno. La particular estabilidad 
por aromaticidad encuentra una justificación intuitiva y lógica 
dentro del concepto de deslocalización electrónica en teoría 
de orbitales moleculares (mayor deslocalización implica menor 
confinamiento electrónico y consecuentemente menor energía o 
mayor estabilidad). Hoy día existe una importante comunidad 
de químicos dedicados a los estudios de aromaticidad y en la 
definición de índices que den cuenta de ella, entre ellos varios 
índices relacionados con la deslocalización electrónica.[9] La 
panoplia de compuestos orgánicos e inorgánicos a los que se 
le aplica el concepto de aromaticidad para analizar sus propie-
dades de estabilidad es, a día de hoy, enorme. 

3. Cien años de contribución de la química cuántica a compues-
tos bencenoides: el grafeno
El parentesco estructural y electrónico entre benceno y grafeno 
no requiere mucha más explicación. La aplicación por primera 
vez de la Mecánica Cuántica al grafeno la realiza Philip R. 
Wallace en 1947 en la búsqueda de la descripción cuántica 
del grafito (i.e., en ese momento el grafito era un material de 
moda gracias a sus propiedades conductoras de la electricidad 
y también al usarse en reactores nucleares en creciente desarro-
llo tras la Segunda Guerra Mundial).[10] 

El tratamiento cuántico del grafeno parte de las mismas 
asunciones que la del benceno, u otros, consistente en el esta-
blecimiento de una función de onda de partida o prueba (i.e., 
intuitiva) y posterior resolución de la ecuación de Schrödinger. 
Al ser grafeno un sistema periódico bidimensional, debemos 
partir de una función de onda que contenga dicha propiedad 
periódica, lo que se introduce con una función de Bloch defini-
da en el espacio recíproco (espacio de momentos, k, y distan-
cias R en espacio recíproco). La función de onda se completa 
multiplicando dicha función de Bloch por una combinación li-
neal de las funciones de onda atómica relevantes (orbital pz del 
carbono) de cada uno de los dos átomos de la base de la red, 
tal y como se muestra en la Figura 6. 

Esta función de onda es incorporada en la ecuación de 
Schrödinger considerando un hamiltoniano en la aproximación 
de tight binding model en la que, tal y como en la teoría de 
Hückel, se consideran sólo los electrones π y las interacciones a 
vecinos. La ecuación secular contiene dos elementos (combina-
ción lineal de dos sumandos provenientes de la descripción de 
los dos átomos de la base de la red), cuya resolución da lugar 
a la aparición de dos bandas cuyos espectros de energía en 

función de los dos vectores de ondas del eje x (kx) e y (ky) en 
la primera zona de Brillouin (espacio recíproco) se representa 
en la Figura 7a. Como cada átomo proporciona un electrón, 
la banda de menor energía está totalmente llena (banda de 
valencia) mientras que la banda de mayor energía está comple-
tamente vacía (banda de conducción).

En esta representación de la energía frente a momento exis-
ten 6 puntos característicos donde las bandas de valencia y 
conducción se tocan a la altura energética del nivel de Fermi 
del sistema, o puntos de Dirac. Dichos puntos de contacto forman 
conos denominados conos de Dirac (i.e., las estructuras de dichos 
conos de Dirac determinan parte de las propiedades más rom-
pedoras de grafeno, por ejemplo, el comportamiento relativista 
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Figura 7. Figura 7. a) Representación de la energía de la estructura 
de bandas de grafeno donde se indican los puntos de Dirac (se 
muestran algunos con flechas violetas), los mínimos entre puntos 
de Dirac (se muestran algunos con triángulos rojos) y con círculo 

amarillo algún punto entre el mínimo local y el punto de Dirac. Se 
indican también algunos puntos característicos de la primera  

zona de Brillouin (G, K y K´); b) estructuras en zigzag y  
arm-chair asociadas a los puntos de Dirac y valles (mínimos  
locales) destacadas en color violeta y rojo respectivamente;  

c) estructura orbitálica de las estructuras zigzag; y d) estructura 
orbitálica de las estructuras arm-chair.
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de estos electrones). Como el contacto se produce en un punto, 
la densidad de estados a esta energía es muy baja y se revela 
el comportamiento semimetálico del grafeno. El comportamien-
to metálico del grafeno se obtiene por dopado, bien tipo p- o 
tipo n-, por oxidación o reducción. Los 6 puntos en los conos 
de Dirac forman un hexágono revelando la simetría hexagonal 
de la estructura. Entre cada dos puntos de Dirac hay un valle 
con un mínimo local de energía donde existe una diferencia 
neta de energía entre la banda de valencia y de conducción y 
que corresponden a zonas con comportamiento semiconductor. 
Desplazándonos desde estos mínimos hasta los puntos de Dirac, 
el gap de energía entre la banda de valencia y de conducción 
se reduce. 

La interpretación de la estructura electrónica del grafeno 
puede trasladarse cualitativamente a su estructura molecular (más 
afín a la interpretación química) del modo que sigue. Los 6 puntos 
de Dirac del grafeno se representan en la Figura 7b y correspon-
den a secuencias all-trans de los sucesivos enlaces entre átomos 
consecutivos, denominados estructuras en zigzag y que, supuesto 
un punto central, parten ramificadamente describiendo la sime-
tría hexagonal (ver estructuras coloreados en violeta en Figura 
7b). Por su parte, los 6 valles (mínimos locales) que existen entre 
cada dos puntos de Dirac corresponden a secuencias de enlaces 
entre átomos no conectados directamente y que se sitúan sobre 
estructuras all-cis y que se denominan estructuras arm-chair (ver 
estructuras coloreados en rojo en Figura 7b). Igualmente partien-
do de un punto central, las estructuras arm-chair se despliegan 
hexagonalmente entre cada dos estructuras zigzag. Finalmente, si 
tomamos un punto (amarillo en Figura 7a) situado entre un punto 
de Dirac y un mínimo, su energía viene dictada por la contri-
bución de una parte arm-chair y una zigzag (dependiendo del 
contenido relativo de una y otra la energía será más cercana al 
punto de Dirac o al mínimo).

Las estructuras en zigzag tienen una composición orbitálica 
que se asemeja a orbitales cristalinos no-enlazantes, en los que 
no existen dos átomos de carbono consecutivos que contengan 
contribución pz. El carácter no-enlazante de estos orbitales del 
cristal revela intuitivamente que se sitúen en el nivel de Fermi 
del grafeno (punto de Dirac) tal y como se muestra en la Figura 
7c. Por otra parte, en los mínimos en los valles entre puntos de 
Dirac, los orbitales tienen contribuciones enlazantes entre los 
carbonos unidos de las estructuras arm-chair, lo que reduce la 
energía respecto al nivel de Fermi, tal y como se muestra en 
la Figura 7d. Es interesante indicar la relevancia actual de las 
nanocintas de grafeno,[11] (i.e., graphene nanoribons) donde los 
estados no-enlazantes en las estructuras zig-zag se desplazan 
hacia la periferia de dichas estructuras y pasan a denominarse 
estados de borde (edge states) donde se revelan igualmente las 
propiedades topológicas de estos sistemas. Los estados de bor-
de sobre estructuras en zig-zag se revelan con comportamiento 
metálico mientras que los bordes con estructura arm-chair son 
semiconductores. La física de grafeno y de las nanocintas de 
grafeno y su comprensión mecano-cuántica primero y su valida-
ción experimental después, ha supuesto en los últimos 30 años 

una de las más importantes contribuciones a la física de la ma-
teria condensada.  

Conclusiones
En este artículo aprovechamos la encrucijada de fechas entre 
el 200 aniversario del descubrimiento por Michael Faraday del 
benceno y el 100 aniversario de la ecuación de Schrödinger 
por Erwin Schrödinger que supone la aparición de la Mecánica 
Cuántica (este año 2025 celebra el IYQ). Para ello, se repasan 
los primeros cálculos químico-cuánticos sobre la molécula de 
benceno que aparecen casi inmediatamente después de la Me-
cánica Cuántica. Dichos cálculos abarcan el uso de la teoría de 
enlace de valencia primeramente y de la teoría de orbitales mo-
leculares (teoría de Hückel) después. Se destacan las primeras 
definiciones emergentes de la aplicación de la teoría cuántica 
al benceno, como híbridos de resonancia o aromaticidad. Final-
mente, aunque algunos años después, se mencionan también 
las bases de la aplicación de la Mecánica Cuántica por primera 
vez al grafeno, y se repasan los principales conceptos estruc-
turales que se utilizan hoy en día para la compresión de las 
estructuras de grafeno en física de materia condensada, tales 
como las nanocintas de grafeno.
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