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Introducción
Desde su descubrimiento en 1825 por Michael Faraday, la mo-
lécula de benceno se ha convertido en una piedra angular en 
el desarrollo de la ciencia de materiales, y en un nexo funda-
mental entre la química y la ciencia de materiales moleculares. 
Así, a lo largo de los últimos 200 años, se ha desarrollado una 
amplia variedad de materiales basados en esta unidad hexago-
nal aromática. En este año, celebramos además el 160 aniver-
sario del modelo propuesto por August Kekulé para explicar su 
estructura. La fusión de bencenos entre sí llevó al desarrollo de 
la química de los hidrocarburos aromáticos policíclicos, donde 
la regla del sextete, con Erich Clar como fundador, resulta aún 
indispensable en el desarrollo de moléculas π-conjugadas. La 
fusión de anillos de benceno tiene su mayor representante en 
el grafeno, inicialmente hipotetizado por Wallace, y aislado en 
2004 por Konstantin Novoselov y Andre Geim. Esta estructura 
formada por una monocapa bidimensional de anillos de ben-
ceno fusionados da lugar a una combinación de propiedades 
eléctricas, mecánicas y ópticas únicas.

Inspirados en esta red bidimensional infinita de anillos 
de benceno y en conjunción con las estrategias sintéticas  
bottom-up, los nanografenos (NGs) surgen como análogos fini-
tos de dicho alótropo. Es a partir de los trabajos pioneros de 

Erich Clar y Klaus Müllen cuando los NGs se convierten en blo-
ques sintéticos fundamentales para diseñar modelos grafénicos 
a medida y poder así explorar propiedades optoelectrónicas 
novedosas.

Siendo el benceno la unidad estructural básica en la cons-
trucción de nanografenos, el hexa-peri-hexabenzocoroneno 
(HBC) puede considerarse la unidad hexagonal de construcción 
básica para sistemas de mayor tamaño, sería el denominado 
“superbenceno” tal y como lo definió K. Müllen (Figura 1).[1] 
Según esta denominación, la fusión de unidades de “superben-
ceno” daría lugar a los homólogos denominados “supeacenos” 
como el “supernaftaleno”, “supertrifenileno” o “superfenalenilo” 
(Figura 1). 

Siguiendo esta misma analogía, surge la familia de los “su-
perhelicenos”, donde las unidades de HBC (superbenceno) se 
disponen de manera helicoidal, dando lugar a helicenos con 
mayor conjugación π (Figura 1).[2–4] Es gracias a esta quirali-
dad inherente y a la extensa conjugación electrónica presente, 
cuando surgen propiedades únicas y diferentes de los sistemas 
planos o de los helicenos sencillos no extendidos.

En NGs quirales, la interacción con luz circularmente polari-
zada permite estudiar tanto la quiralidad del estado fundamental 
como la del estado excitado. La absorción preferencial entre luz 
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circularmente polarizada a la izquierda o a la derecha se mide 
mediante dicroísmo circular (CD), cuantificado por el factor de 
disimetría de absorción (gabs). De manera análoga, la luminiscen-
cia circularmente polarizada (CPL) se evalúa mediante el factor 
de disimetría de emisión (glum). Los factores de disimetría depen-
den de la simetría molecular, los momentos dipolares eléctricos 
y magnéticos de la transición electrónica, y el ángulo entre ellos. 
Valores grandes de g que indican fuerte discriminación quiral. A 
efectos prácticos, un buen valor de glum requiere a su vez de un 
buen rendimiento cuántico de fluorescencia. Así surge un nuevo 
parámetro para evaluar de forma integral la eficiencia de CPL, 
el brillo CPL (BCPL), que combina la absorción, la emisión y la 
fluorescencia, ofreciendo un índice más completo para aplicacio-
nes prácticas de emisores quirales. Combinando las propiedades 
electrónicas del grafeno con la actividad quiral, los NGs quirales 
afloran como candidatos prometedores para el desarrollo de dis-
positivos optoelectrónicos y OLEDs.

En los últimos años, este campo se ha orientado hacia el di-
seño de nanografenos modificados incluyendo heteroátomos o 
sistemas curvos incorporando anillos no hexagonales, dando 
lugar a aplicaciones en campos tan amplios como sensores, 
electrónica orgánica, semiconductores, bioimagen o cifrado 
óptico.[5]

A continuación, se recogen algunos ejemplos representativos 
de “superhelicenos” sintetizados mediante metodologías bot-
tom-up y que presentan CPL. 

Diseño y estrategias de síntesis de superhelicenos 
quirales

La síntesis de NGs quirales requiere de un control del tamaño, 
bordes y forma del sistema aromático policíclico, así como de 
la introducción de quiralidad. La inducción de quiralidad se 
logra gracias al fuerte impedimento estérico provocado por 
la proximidad de diferentes átomos o grupos. Las dos estra-
tegias más utilizadas para generar este impedimento son: i) la 
inserción de grupos voluminosos, como el grupo terc-butilo o 
grupos aromáticos grandes, en posiciones específicas del pe-

rímetro del NG, para así forzar a la molécula a romper la 
planicidad y ii) la fusión de anillos para generar helicenos o 
espirales helicoidales en la propia estructura. En el caso de los 
superhelicenos, estos se construyen mediante la fusión de una o 
más unidades de hexa-peri-hexabenzocoroneno (HBC) con uno 
o varios carbohelicenos. 

A continuación, se incluyen algunos ejemplos seleccionados 
de NGs curvos emisores de CPL, clasificados dependiendo del 
número de unidades de HBCs presentes. 

Superhelicenos con una unidad de HBC
El representante más sencillo de esta familia es el compuesto 1 
(Figura 2).[6,7] Dicho carbo[5]heliceno incrustado en la estructu-
ra de un HBC presenta un rendimiento cuántico de fluorescen-
cia (ΦF) de 0.11 y un valor de |glum| = 1×10–3. Con la extensión 
de dicho heliceno ([7]heliceno para el compuesto 2 y [9]helice-
no para el compuesto 3) se han observado incrementos en los 
valores de ΦF (0.25 y 0.44, respectivamente) (Figura 2).[8] 

Sin embargo, la inserción de un mayor número de helicenos 
en estas estructuras no siempre conlleva un incremento del valor 
de glum, ya que existen casos reportados en los que este valor es 
incluso menor, en comparación con sus análogos con una sola 
hélice.[9,10] En contraposición, una estrategia que sí ha mostrado 
incrementar la señal de CPL es la modificación de la topología 
del HBC.[11] 

Superhelicenos con dos unidades de HBC
La siguiente familia de compuestos es aquella en la que dos 
unidades de HBC están conectadas por un heliceno central.  
Los primeros representantes de este grupo son los NGs tipo 
bicapa reportados, primeramente, por el grupo de Nazario 
Martín y posteriormente por los grupos de Xinliang Feng y Ji 
Ma.[12,13] Esta familia se caracteriza por presentar dos unidades 
de HBC conectadas por carbohelicenos de diferente longitud 
([7]heliceno para 4, [9]heliceno para 5, [10]heliceno para 6 y 
[11]heliceno para 7) (Figura 3). El compuesto 5 es el que mostró 
un valor notablemente alto de |glum| de 3.6×10-2 a 575 nm. Este 
hecho muestra que en un [9]heliceno, la superposición y distan-
cia entre las dos unidades de HBC es la óptima para maximizar 
el valor de glum en un sistema tipo bicapa.

Adicionalmente, se han estudiado sistemas basados en 
dos unidades de HBC en los cuales la quiralidad se introdu-
ce mediante unidades basadas en carbonos sp3. El compues-
to 8 utiliza un tripticeno como conector de las dos unidades 
de HBC para dar lugar a un NG quiral que muestra un valor de 
|glum| = 1×10–3.[14] Otro ejemplo interesante es la utilización de 
la unidad de triindano como conector quiral de dos HBC.[15]  
En este caso, además se consiguió por primera vez llevar a 
cabo una reacción de Scholl enantioespecífica, con la unidad 
de triidano como auxiliar quiral, para generar el compuesto 
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Figura 1. Características generales de los superacenos, helicenos 
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9 (Figura 3). Este compuesto con tres carbonos asimétricos y 
dos carbo[5]helicenos mostró valores de |glum| = 1.9×10-3 y de 
BCPL = 16.7 M−1 cm−1. 

En 2018, nuestro grupo presentó la síntesis del primer NG 
quiral emisor de CPL.[16] Este NG con forma de cinta helicoidal, 
10 (Figura 3), presenta dos unidades de HBC conectadas por 
un [5]heliceno y con curvatura negativa derivada de la inclu-
sión de un anillo heptagonal en la periferia de uno de los HBC. 
Su respuesta de CPL estaba centrada en 560 nm con un valor 
de |glum| = 0.23×10–3.

También cabe destacar la incorporación de heteroátomos 
para modular las propiedades quirópticas de estos NGs qui-
rales. En este sentido, la inserción de una unidad de carba-
zol, 11a (Figura 4), dio lugar a desplazamientos de fluorescen-
cia hacia el rojo (λem = 542 nm y ΦF = 0.75) con valor de  
|glum| = 1.1×10-3.[17]

El término superheliceno fue acuñado por Norbert Jux en 
la síntesis del NG 12, incorporando una unidad de furano. La 
inserción de átomos de oxígeno da lugar a una disminución 
de la respuesta de CPL en comparación con los análogos pu-
ramente carbonados. Concretamente, para los compuestos 12 
(|glum| = 0.3×10–3) y 13 (|glum| = 2.6×10–3) (Figura 4) se observan 
valores menores respecto a sus análogos 4 y 5, respectivamente.
[4,18] Un fenómeno reseñable en 12 fue la amplificación de la res-
puesta de CPL en 500 veces cuando el compuesto se incorpora 
en una matriz aquiral de polidioctilfluoreno (PFO) presentada por 
el grupo de Matthew J. Fuchter, efecto que se explicó mediante 
una transferencia de energía de resonancia tipo Förster (FRET). 

Finalmente, el compuesto 14 (Figura 4) constituye otro re-
presentante de esta familia, en el que dos unidades de HBC se 
conectan a través de una unidad de BINOL. El compuesto 14 
exhibe valores de |glum| = 0.23×10–3.[19]

Superhelicenos con tres unidades de HBC
A medida que se aumenta el número de unidades de HBC 
surgen mayores posibilidades respecto a la topología del 
NG quiral. Es el caso de los compuestos 15, 16 y 17 (Figura 
5).[12,20] Estos NGs, constituidos por tres unidades de HBC, pre-
sentan una disposición relativa orto -, para- y meta-, haciendo 
posible una modulación del glum y por tanto la respuesta de 
CPL. Para 15 y 17, se reportaron valores de |glum| = 2.7×10–3 
y 8.7×10–3, respectivamente. Sin embargo, fue la disposición 
relativa para- la que mostró mejores valores de respuesta de 
CPL (|glum| = 13.2×10-3 y BCPL = 176 M−1 cm−1). Esto es debido 
a que esta disposición geométrica optimiza el ángulo entre los 
momentos dipolares eléctrico y magnético de las transiciones 
involucradas.

Nuestro grupo también ha contribuido en el aumento del 
número de HBCs en superhelicenos que emiten CPL con los 
compuestos 18 y 19 (Figura 5), los cuales presentan tres unida-
des de HBC. Además, se incorpora curvatura adicional deriva-
da de anillos de siete miembros presentes en la periferia.[3,21] 
Estos NGs quirales helicoidales mostraron valores de |glum| de 
2×10–3 y 3×10–3, para 18 y 19 respectivamente. En particular, 
el compuesto 19 mostró una emisión desplazada al rojo, debi-
do a la estructura helicoidal junto a la curvatura negativa de 
tipo silla de montar generada por la presencia de los anillos 
heptagonales. 

Finalmente, el dopaje con heteroátomos también está presen-
te en estos análogos de mayor tamaño. Concretamente, el NG 
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helicoidal 11b (Figura 4), que presenta una unidad de carbazol 
sustituida con un HBC presenta una emisión desplazada al rojo 
(595 nm), al igual que el análogo 11, y valores de respuesta de 
CPL dependientes del disolvente. (|glum| = 1.3×10–3 en MeCN).[22] 

Superhelicenos con cuatro o más unidades de HBC
También se han presentado sistemas de mayor tamaño y ma-
yor complejidad, como los compuestos 20, 21, 22 y 23 (Figura 
6), al contener múltiples unidades de HBC (cuatro o más) en 
conjunción con uno o varios helicenos simples o extendidos. 
El compuesto 20, a pesar de su alta π-extensión y ΦF, presenta 
un valor bajo de |glum| = 1.5×10–3, lo que pone de manifiesto 
que un mayor número de helicenos o una mayor complejidad 
estructural no siempre deriva en una mejora de la respuesta de 
CPL.[23,24]

En los compuestos 21 y 22 se explora en profundidad la in-
fluencia de la extensión lateral del sistema π. Para el compuesto 
21, la extensión del heliceno central con cuatro unidades de 
HBC resultó en un desplazamiento de la emisión al infrarrojo 
cercano (600-900 nm), con valores de (|glum| = 4.5×10–2 y BCPL 
= 304 M−1 cm−1. En contraposición, el compuesto 22, incorpora 
una unidad de HBC adicional, dando lugar a un NG helicoidal 
en forma de W, que presenta valores de glum menores (4.0×10–3) 
poniendo de manifiesto de nuevo la baja correlación entre el 
número de unidades helicénicas y la respuesta quiróptica. Otro 

ejemplo de NG quiral de alta complejidad estructural lo po-
demos encontrar en el compuesto 23, reportado por nuestro 
grupo.[25] Este NG distorsionado presenta cuatro unidades de 
HBC, múltiples anillos heptagonales y tres helicenos extendidos. 
Esta estructura altamente compleja dio lugar a una mezcla de 
diastereoisómeros con valores de glum modestos (0.2–0.3×10–3). 
En resumen, el comportamiento de estos NG complejos confir-
ma que la intensa respuesta de CPL reside en un diseño geomé-
trico racional donde la alineación de los momentos dipolares 
eléctricos y magnéticos sea óptima, en lugar de aumentar el 
número de unidades de HBC o la complejidad molecular sin 
un diseño previo. 

Conclusiones 
En este punto, las perspectivas de futuro en el campo de los NGs 
quirales se centran en superar obstáculos tales como el desarro-
llo de síntesis enantioselectivas eficaces, la optimización de las 
propiedades quirópticas y la integración eficaz en materiales fun-
cionales. Por un lado, la mayor parte de las metodologías actua-
les requieren de la separación de mezclas racémicas, limitando 
en gran medida la escalabilidad y rendimiento de las rutas de 
síntesis. Por tanto, el desarrollo de metodologías catalíticas y/o 
enantioselectivas es crucial para el mejor control de la quiralidad 
y eficiencia de la ruta sintéticas. Trabajos recientes están demos-
trando el gran potencial de este tipo de aproximaciones.[7,15,18]
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Por otro lado, la optimización y mejora de las propiedades 
quirópticas requiere de una comprensión profunda entre la es-
tructura molecular, las transiciones electrónicas y el factor de 
disimetría glum. En diversos trabajos se ha demostrado que un 
ajuste racional de los momentos dipolares eléctrico y magnéti-
co, así como de la orientación entre ellos, es fundamental para 
incrementar notablemente la respuesta quiral.[26–28] En esta tesi-
tura, las herramientas de aprendizaje automático y los métodos 
computacionales surgen como recursos valiosos para predecir y 
optimizar estos parámetros mediante la correlación de diferen-
tes motivos estructurales con dichos momentos dipolares.

En conclusión, alcanzar un compromiso eficiente entre altos 
valores de rendimiento de fluorescencia y factores de disimetría 
requiere de un diseño molecular inteligente. Los enfoques in-
terdisciplinares que aúnen la síntesis química, la modelización 
teórica y la ciencia de materiales serán fundamentales para 
el desarrollo de la siguiente generación de materiales quirales 
basados en NGs con aplicaciones en electrónica y fotónica. 

No obstante, no podemos olvidar que la creación y el con-
trol de la quiralidad en materiales basados en el carbono resul-
ta apasionante simplemente desde el punto de vista estructural. 
Celebrar el 200 aniversario del descubrimiento del benceno 
o el 20 aniversario del aislamiento del grafeno, nos sirve de 
recordatorio del potencial único de la curiosidad científica y la 
investigación básica, pudiendo llegar a grandes revoluciones 
tecnológicas. 
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