Abstract
The chemistry of transition metal complexes with monoanionic bidentate ligands k2-Si,L and/or tridentate k3-Si,L2—where Si represents a silyl group and L ligands with neutral s-donor groups—has gained increasing interest in recent years. This review highlights the advances achieved through the application of these complexes as catalysts in essential processes, such as the hydrogenation and hydrosilylation of unsaturated molecules.
References
R. J. Lundgren, M. Stradiotto, Key Concepts in Ligand Design. In Ligand Design in Metal Chemistry: Reactivity and Catalysis (Eds: M. Stradiotto, R.J. Lundgren). Wiley, Weinheim, 2016, https://doi.org/10.1002/9781118839621.ch1.
M. Batuecas, A. Goméz-España, F. J. Fernández-Álvarez, ChemPlusChem 2024, 89, e202400162, https://doi.org/10.1002/cplu.202400162.
M. Okazaki, S. Ohshitanai, M. Iwata, H. Tobita, H. Ogino, Coord. Chem. Rev. 2002, 226, 167–178, https://doi.org/10.1016/S0010-8545(01)00422-2.
J. Gao, Y. Ge, C. He, Chem. Soc. Rev. 2024, 53, 4648–4673, https://doi.org/10.1039/D3CS00893B.
J. A. Cabeza, P. García-Álvarez, Chem. Eur. J. 2023, 29, e202203096, https://doi.org/10.1002/chem.202203096.
T. Komuro, Y. Nakajima, J. Takaya, H. Hashimoto, Coord. Chem. Rev. 2022, 473, 214837; https://doi.org/10.1016/j.ccr.2022.214837.
M. T. Whited, Dalton Trans. 2021, 50, 16443–16450, https://doi.org/10.1039/D1DT02739E.
M. Simon, F. Breher, Dalton Trans. 2017, 46, 7976–7997, https://doi.org/10.1039/C7DT02085F.
M. Tanabe, K. Osakada, Transition Metal Complexes of Silicon (Excluding Silylene Complexes), Chapter 2, in Organosilicon Compounds, Theory and Experiment (Synthesis) (Ed.: V. Y. Lee), Academic Press, London, 2017, https://doi.org/10.1016/B978-0-12-801981-8.00002-2.
E. Sola, Silicon-based pincers: trans influence and functionality. Chapter 19, in Pincer Compounds: Chemistry and Applications, (Ed.: D. Morales-Morales) Elsevier, 2018, https://doi.org/10.1016/B978-0-12-812931-9.00019-0.
F. J. Fernández-Alvarez, R. Lalrempuia, L. A. Oro, Coord. Chem. Rev. 2017, 350, 49–60, https://doi.org/10.1016/j.ccr.2017.04.011.
J. Wagler, R. Gericke, Polyhedron 2023, 245, 116663, https://doi.org/10.1016/j.poly.2023.116663.
P. Zhang, S. Xu, X. Li, X. Qi, H. Sun, O. Fuhr, D. Fenske, Polyhedron 2018, 143, 165–170, https://doi.org/10.1016/j.poly.2017.09.043.
T. Komuro, K. Furuyama, T. Kitano, H. Tobita, J. Organomet. Chem. 2014, 751, 686–694, https://doi.org/10.1016/j.jorganchem.2013.09.009.
T. Komuro, T. Arai, K. Kikuchi, H. Tobita, Organometallics 2015, 34, 1211–1217, https://doi.org/10.1021/om5011885.
M. T. Whited, A. M. Deetz, T. M. Donnell, D. E. Janzen, Dalton Trans. 2016, 45, 9758–9761, https://doi.org/10.1039/C6DT00027D
M. T. Whited, M. J. Trenerry, K. E. DeMeulenaere, B. L. H. Taylor, Organometallics 2019, 38, 1493–1501, https://doi.org/10.1021/acs.organomet.8b00922.
L. J. Murphy, A. J. Ruddy, R. McDonald, M. J. Ferguson, L. Turculet, Eur. J. Inorg. Chem. 2018, 4481–4493, https://doi.org/10.1002/ejic.201800915.
L. J. Murphy, M. J. Ferguson, R. McDonald, M. D. Lumsden, L. Turculet, Organometallics 2018, 37, 4814–4826, https://doi.org/10.1021/acs.organomet.8b00807.
D. J. Hale, M. J. Ferguson, L. Turculet, ACS Catal. 2022, 12, 146–155, https://doi.org/10.1021/acscatal.1c04537.
Y. Sunada, H. Tsutsumi, K. Shigeta, R. Yoshida, T. Hashimoto, H. Nagashima, Dalton Trans. 2013, 42, 16687–16692, https://doi.org/10.1039/C3DT52598H.
K. Sato, T. Komuro, T. Osawa, H. Hashimoto, H. Tobita, Organometallics 2022, 41, 2612–2621, https://doi.org/10.1021/acs.organomet.2c00373.
A. Gómez-España, P. García-Orduña, F. J. Lahoz, I. Fernández, F. J. Fernández-Álvarez, Organometallics 2024, 43, 402–413, https://doi.org/10.1021/acs.organomet.3c00498.
R. Webber, M. I. Qadir, E. Sola, M. Martín, E. Suárez, J. Dupont, Catal. Commun. 2020, 146, 106125, https://doi.org/10.1016/j.catcom.2020.106125.
Z. Mo, Y. Liu, L. Deng, Angew. Chem. Int. Ed. 2013, 52, 10845–10849, https://doi.org/10.1002/anie.201304596.
U. Prieto, S. Azpeitia, E. San Sebastian, Z. Freixa, M. A. Garralda, M. A. Huertos, ChemCatChem 2021, 13, 1403–1409, https://doi.org/10.1002/cctc.202001699.
U. Prieto-Pascual, A. Martínez de Morentin, D. Choquesillo-Lazarte, A. Rodríguez-Diéguez, Z. Freixa, M. A. Huertos, Dalton Trans. 2023, 52, 9090–9096, https://doi.org/10.1039/D3DT00624G.
S. Azpeitia, A. Rodriguez-Dieguez, M. A. Garralda, M. A. Huertos, ChemCatChem 2018, 10, 2210–2213, https://doi.org/10.1002/cctc.201800159.
Y. Dong, P. Zhang, Q. Fan, X. Du, S. Xie, H. Sun, X. Li, O. Fuhr, D. Fenske, Inorg. Chem. 2020, 59, 16489–16499, https://doi.org/10.1021/acs.inorgchem.0c02332.
Y. Dong, S. Xie, P. Zhang, Q. Fan, X. Du, H. Sun, X. Li, O. Fuhr, D. Fenske, Inorg. Chem. 2021, 60, 4551–4562, https://doi.org/10.1021/acs.inorgchem.0c03483.
S. Wu, X. Li, Z. Xiong, W. Xu, Y. Lu, H. Sun, Organometallics 2013, 32, 3227–3237, https://doi.org/10.1021/om400047j.
G. Chang, P. Zhang, W. Yang, S. Xie, H Sun, X. Li, O. Fuhr, D. Fenske, Dalton Trans. 2020, 49, 9349–9354, https://doi.org/10.1039/D0DT00392A.
S. Ren, S. Xie, T. Zheng, Y. Wang, S. Xu, B. Xue, X. Li, H. Sun, O. Fuhr, D. Fenske, Dalton Trans. 2018, 47, 4352–4359, https://doi.org/10.1039/C8DT00289D.
K. Garcés, R. Lalrempuia, V. Polo, F. J. Fernández-Alvarez, P. García-Orduña, F. J. Lahoz, J. J. Pérez-Torrente, L. A. Oro, Chem. Eur. J. 2016, 22, 14717–14729, https://doi.org/10.1002/chem.201602760.
I. Bustos, C. Mendicute-Fierro, M. A. Huertos, Organometallics 2024, https://doi.org/10.1021/acs.organomet.4c00234.
J. Guzmán, A. M. Bernal, P. García-Orduña, F. J. Lahoz, L. A. Oro, F. J. Fernández-Alvarez, Dalton Trans. 2019, 48, 4255–4262, https://doi.org/10.1039/C8DT05070H.
F. J. Fernández–Alvarez, L. A. Oro, ChemCatChem 2018, 10, 4783–4796, https://doi.org/10.1002/cctc.201800699.
S. J. Mitton, L. Turculet, Chem. Eur. J. 2012, 18, 15258–15262, https://doi.org/10.1002/chem.201203226.
R. Lalrempuia, M. Iglesias, V. Polo, P. J. San Miguel, F. J. Fernández-Alvarez, J. J. Pérez-Torrente, L. A. Oro, Angew. Chem. Int. Ed. 2012, 51, 12824–12827, https://doi.org/10.1002/anie.201206165.
A. Julián, E. A. Jaseer, K. Garcés, F. J. Fernández-Alvarez, P. García-Orduña, F. J. Lahoz, L. A. Oro, Catal. Sci. Technol. 2016, 6, 4410–4417, https://doi.org/10.1039/C5CY02139A.
A. Julián, J. Guzmán, E. A. Jasser, F. J. Fernández-Alvarez, R. Royo, V. Polo, P. García-Orduña, F. J. Lahoz, L. A. Oro, Chem. Eur. J. 2017, 23, 11898–11907, https://doi.org/10.1002/chem.201702246.
J. Guzmán, P. García-Orduña, V. Polo, F. J. Lahoz, L. A. Oro, F. J. Fernández-Alvarez, Catal. Sci. Technol. 2019, 9, 2858–2867, https://doi.org/10.1039/C8CY02353K.
J. Guzmán, A. Urriolabeitia, M. Padilla, P. García-Orduña, V. Polo, F. J. Fernández-Alvarez, Inorg. Chem. 2022, 61, 20216–20221, https://doi.org/10.1021/acs.inorgchem.2c03330.
K. Garcés, F. J. Fernández-Alvarez, V. Polo, R. Lalrempuia, J. J. Pérez-Torrente, L. A. Oro, ChemCatChem 2014, 6, 1691–1697, https://doi.org/10.1002/cctc.201301107.
A. Julián, K. Garcés, R. Lalrempuia, E. A. Jaseer, P. García-Orduña, F. J. Fernández-Alvarez, F. J. Lahoz, L. A. Oro, ChemCatChem 2018, 10, 1027–1034, https://doi.org/10.1002/cctc.201701488.
A. Julián, V. Polo, E. A. Jaseer, F. J. Fernández-Alvarez, L. A. Oro, ChemCatChem 2015, 7, 3895–3902, https://doi.org/10.1002/cctc.201500651.
N. Almenara, M. A. Garralda, X. Lopez, J. M. Matxain, Z. Freixa, M. A. Huertos, Angew. Chem. Int. Ed. 2022, 61, e202204558, https://doi.org/10.1002/anie.202204558.
A. Gómez-España, P. García-Orduña, J. Guzmán, I. Fernández, F. J. Fernández-Alvarez, Inorg. Chem. 2022, 61, 16282–16294, https://doi.org/10.1021/acs.inorgchem.2c01973.
P. García-Orduña, I. Fernández, L. A. Oro, F. J. Fernández-Alvarez, Dalton Trans. 2021, 50, 5951–5959, https://doi.org/10.1039/D1DT00473E.