The Push-Pull model as a strategy for molecular activation and stabilization
PDF (Español)

Keywords

push-pull
donor-acceptor
cooperative chemistry
small molecule activation
bimetallic complexes
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Anales de Química de la RSEQ

Views
  • Abstract 199
  • PDF (Español) 196

Abstract

In this work, we review the concept of Push-Pull (donor-acceptor) as a strategy for the activation of inert molecules
or the stabilization of highly reactive fragments. This model is based on the combination of an electron-rich and an electron-poor center that, in a concerted manner, can donate (push) and withdraw (pull) electron density from
another molecular fragment. This perspective describes various examples that demonstrate the interest and applicability of this strategy, including systems that enable the activation of inert molecules such as CO2 or N2, as well as others that allow the stabilization of highly reactive fragments like LiH or LiMe.

https://doi.org/10.62534/rseq.aq.2018
PDF (Español)

References

R. F. Service, Science 1999, 285, 184–187, https://doi.org/10.1126/science.285.5425.184

D. R. MacFarlane, A. N. Simonov, T. M. Vu, S. Johnstona, L. M. Azofra, Faraday Discuss. 2023, 243, 557–570, https://doi.org/10.1039/D3FD00087G.

D, Singh, W. R. Buratto, J. F. Torres, L. J. Murray, Chem. Rev. 2020, 120, 5517–5581, https://doi.org/10.1021/acs.chemrev.0c00042.

S. Kim, F. Loose, P. J. Chirik, Chem. Rev. 2020, 120, 5637–5681, https://doi.org/10.1021/acs.chemrev.9b00705.

C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183-5191, https://doi.org/10.1039/C4CS00085D.

R. M. Andrew, G. P. Peters, 2022, The Global Carbon Project's fossil CO2 emissions dataset (2022v27), https://doi.org/10.5281/zenodo.7215364.

M. Y. Darensbourg, A. Llobet, Inorg. Chem. 2016, 55, 371-377, https://doi.org/10.1021/acs.inorgchem.5b02925.

B. Milani, G. Licini, E. Clot, M. Albrecht, Dalton Trans. 2016, 45, 14419-14420, https://doi.org/10.1039/C6DT90140A.

O. Einsle, D. C. Rees, Chem. Rev. 2020, 120, 12, 4969–5004, https://doi.org/10.1021/acs.chemrev.0c00067.

L. C. Seefeldt, Z.-Y. Yang, D. A. Lukoyanov, D. F. Harris, D. R. Dean, S. Raugei, B. M. Hoffman, Chem. Rev. 2020, 120, 5082–5106, https://doi.org/10.1021/acs.chemrev.9b00556.

K. Tanifuji, Y. Ohki, Chem. Rev. 2020, 120, 5194–5251, https://doi.org/10.1021/acs.chemrev.9b00544.

J. H. Jeoung, H. Dobbek, Science 2007, 318, 1461–1464, https://doi.org/10.1126/science.1148481.

Y. Li, M. Gomez-Mingot, T. Fogeron, M. Fontecave, Acc. Chem. Res. 2021, 54, 4250–4261, https://doi.org/10.1021/acs.accounts.1c00461

M. Perez-Jimenez, H. Corona, F. de la Cruz-Martínez, J. Campos, Chem. Eur. J. 2023, e202301428, https://doi.org/10.1002/chem.202301428.

A. J. Ruddy, D. M. C. Ould, P. D. Newman, R. L. Melen, Dalton Trans. 2018, 47, 10377–10381, https://doi.org/10.1039/C8DT01168K.

D. Specklin, M-C. Boegli, A. Coffinet, L. Escomel, L. Vendier, M. Grellier, A. Simmoneau, Chem. Sci. 2023, 14, 14262–14270, https://doi.org/10.1039/D3SC04390H.

A. Braaksma, H. Haaker, H. J. Grande, C. Veeger, Eur. J. Biochem. 1982, 121, 483–491, https://doi.org/10.1111/j.1432-1033.1982.tb05813.x.

A. S. Borovik, Acc. Chem. Res. 2005, 38, 54–61, https://doi.org/10.1021/ar030160q.

T. Spatzal, K. A. Perez, O. Einsle, J. B. Howard, D. C. Rees, Nature 2014, 345, 1620–1623, https://doi.org/10.1126/science.1256679

J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 5952–5956, https://doi.org/10.1021/jacs.7b01982.

X. Zheng, I. Zulkifly, A. Heilmann, C. McManus, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 16416–16419, https://doi.org/10.1002/ange.202106413.

Z. Mo, E. L. Kolychev, A. Rit, J. Campos, H. Niu, S. Aldridge, J. Am. Chem. Soc. 2015, 137, 12227–12230, https://doi.org/10.1021/jacs.5b08614.

J. Sinclair, G. Dai, R. McDonald, M. J. Ferguson, A. Brown, E. Rivard, Inorg. Chem. 2020, 59, 10996–11008, https://doi.org/10.1021/acs.inorgchem.0c01492

D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441, https://doi.org/10.1002/anie.201409800

A. J. Ruddy, D. M. C. Ould, P. D. Newman, R. L. Melen, Dalton Trans. 2018, 47, 10377–10381, https://doi.org/10.1039/C8DT01168K.

A. Simonneau, R. Turrel, L. Vendier, M. Etienne. Angew. Chem. Int. Ed. 2017, 56, 12268–12272. DOI: https://doi.org/10.1002/anie.201706226.

M. Navarro, J. J. Moreno, M. Pérez-Jiménez, J. Campos, Chem. Commun. 2022, 58, 11220–11235, https://doi.org/10.1039/D2CC04296G.

N. Jori, J. J. Moreno, R. A. K. Shivaraam, T. Rajeshkumar, R. Scopelliti, L. Maron, J. Campos, M. Mazzanti, Chem. Sci. 2024, 15, 6842–6852, https://doi.org/10.1039/D4SC01050G.

E. A. Boyd, J. C. Peters J. Am. Chem. Soc. 2023, 145, 14784-14792, https://doi.org/10.1021/jacs.3c03352.

M. Hirano, M. Akita, K. Tani, K. Kumagai, N. Kasuga, A. Fukuoka, S. Komiya. Organometallics 1997, 16, 4206–4213, https://doi.org/10.1021/om960743m.

L. Escomel, I. Del Rosal, L. Maron, E. Jeanneau, L. Veyre, C. Thieuleux, C. Camp, J. Am. Chem. Soc. 2021, 143, 4844–4856, https://doi.org/10.1021/jacs.1c01725.

S. Sinhababu, M. R. Radzhabov, J. Tesler, N. P. Mankad. J. Am. Chem. Soc. 2022, 144, 3210–3221, https://doi.org/10.1021/jacs.1c13108.

C. McManus, J. Hicks, X. Cui, L. Zhao, G. Frenking, J. M. Goicoechea, S. Aldridge, Chem. Sci. 2021, 12, 13458–13468, https://doi.org/10.1039/D1SC04676D.

H. Corona, M. Pérez-Jiménez, F. de la Cruz-Martínez, I. Fernández, J. Campos, Angew. Chem. Int. Ed. 2022, 61, e202207581, https://doi.org/10.1002/ange.202207581.

L. Escomel, Q. Le Dé, M. Benonie, L. Vendier, A. Simonneau, Chem. Commun., 2024, 60, 13235-13238, https://doi.org/10.1039/D4CC02349H.

J. Campos, J. Nat. Rev. Chem. 2020, 4, 696, https://doi.org/10.1038/s41570-020-00226-5.

J. Campos, J. Am. Chem. Soc. 2017, 139, 8, 2944–2947, https://doi.org/10.1021/jacs.7b00491.

N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. López-Serrano, J. Campos, Chem. Eur. J. 2020, 26, 5982–5993, https://doi.org/10.1002/chem.201905793.

N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. López-Serrano, J. Campos, Organometallics 2020, 39, 2534–2544, https://doi.org/10.1021/acs.organomet.0c00330.

L. F. Dahl, E. Ishishi, R. E. Rundle, J. Chem. Phys. 1957, 26, 1750–1751, https://doi.org/10.1063/1.1743615.

F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, J. S. Wood, Science 1964, 145, 1305–1307, https://doi.org/10.1126/science.145.3638.1305.

T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger G. J. Long, P. P. Power, Science 2005, 310, 844–847, https://doi.org/10.1126/science.1116789.

N. V. S. Harisomayajula, A. K. Nair, Y.-C. Tsai, Chem. Commun. 2014, 50, 3391–3412, https://doi.org/10.1039/C3CC48203K.

A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe, Nat. Chem. 2009, 1, 322–325, https://doi.org/10.1038/nchem.255.

A. Noor, S. Qayyum, T. Bauer, S. Schwarz, B. Weber, R. Kempe, Chem. Commun. 2014, 50, 13127–13130, https://doi.org/10.1039/C4CC05071A.

C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 7283–7286, https://doi.org/10.1002/anie.201102361.

J. Shen, G. P. A. Yap, K. H. Theopold, Chem. Commun. 2014, 50, 2579–2581, https://doi.org/10.1039/C3CC48746F.

Y.-S. Huang, G.-T. Huang, Y.-L. Liu, J.-S. K. Yu, Y.-C. Tsai, Angew. Chem. Int. Ed. 2017, 56, 15427–15431, https://doi.org/10.1002/ange.201709583.

H. Z. Chen, S.-C. Liu, C.-H. Yen, J.-S. K. Yu, Y.-J. Shieh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 10342–10346, https://doi.org/10.1002/anie.201205027.

K. M. Gramigna, D. A. Dickie, B. M. Foxman, C. M. Thomas, ACS Catal. 2019, 9, 3153–3164, https://doi.org/10.1021/acscatal.8b04390

M. Pérez-Jiménez, J. Campos, J. López-Serrano, E. Carmona, Chem. Commun. 2018, 54, 9186–9189, https://doi.org/10.1039/C8CC04945A.

M. Pérez-Jiménez, N. Curado, C. Maya, J. Campos, E. Ruiz, S. Álvarez, E. Carmona, Chem. – Eur. J. 2021, 27, 6569–6578, https://doi.org/10.1002/chem.202004948.

J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481–11503, https://doi.org/10.1039/c2cc35304k.

M. Pérez-Jiménez, J. Campos, J. Jover, S. Álvarez, E. Carmona, Organometallics 2022, 41, 3225–3236, https://doi.org/10.1021/acs.organomet.2c00216.

P. Jochmann, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 52: 9831–9835, https://doi.org/10.1002/anie.201303968.

M. Pérez-Jiménez, N. Curado, C. Maya, J. Campos, J. Jover, S. Álvarez, E. Carmona, J. Am. Chem. Soc. 2021, 143, 5222–5230, https://doi.org/10.1021/jacs.1c01602.

K. Fischer, K. Jonas, P. Misbach, R. Stabba, G. Wilke, Angew. Chem. Int. Ed. Engl. 1973, 12, 943–953, https://doi.org/10.1002/anie.197309431.

V. Gessner, C. Däschlein, C. Strohmann, Chem. – Eur. J. 2009, 15, 3320–3334, https://doi.org/10.1002/chem.200900041.

M. Pérez-Jiménez, J. Campos, J. Jover, S. Álvarez, E. Carmona, Angew. Chem. Int. Ed. 2022, 61, e202116009, https://doi.org/10.1002/anie.202116009.

M. Perez-Jimenez, J. Campos, Polyhedron 2023, 244, 116610, https://doi.org/10.1016/j.poly.2023.116610.