Abstract
The use of a catalyst and H2 or hydrogen sources for the reduction of oxygen content in a variety of materials is known as catalytic hydrodeoxigenation (HDO). The aim of its use in biomass-derived materials is the reduction of oxygen content. The ideal products are sustainable hydrocarbons, neutral in carbon; however, also some other useful products can be obtained on the way. This paper presents a general overview in the field along with examples related to fuel production and value-added products.
References
A. Muscat, E. M. de Olde, I. J. M. de Boer, R. Ripoll-Bosch, Glob. Food Secur. Agr 2020, 25, 100330, https://doi.org/10.1016/j.gfs.2019.100330.
A. Tursi, Biofuel Res. J.l 2019, 22, 962-979, https://doi.org/10.18331/BRJ2019.6.2.3.
M. Lopes, S. M. Miranda, I. Belo, Crit Rev Env Sci Tec 2020, 50, 2583-2616, https://doi.org/10.1080/10643389.2019.1704602.
T. A. Moonsamy, G. Rajauria, A. Priyadarshini, M. A. K. Jansen, Food and Bioprod. Process. 2024, 148, 31-42, https://doi.org/ 10.1016/j.fbp.2024.08.012.
A. S. Belousov, A. L. Esipovich, E. A. Kanakov, K. V. Otopkova, Sus. Energy & Fuels 2021, 5, 4512-4545, https://doi.org/10.1080/15435075.2024.2430444
B. J. Zhao, B. Du, J. S. Hu, Z. J. Huang, S. D. Xu, Z. Y. Chen, D. F. Cheng, C. B. Xu, Catalysts 2024, 14, https://doi.org/ 10.3390/catal14100673.
H. W. Zhang, J. Zhang, Y. D. Ma, Z. P. Cai, Y. N. Cao, K. Huang, L. L. Jiang, Appl. Cat. A-General 2025, 699, https://doi.org/ 10.1016/j.apcata.2025.120278.
J. Tollefson, Nature 2018, 556, 422-425. https://doi.org/ 10.1038/d41586-018-04931-6.
J. E. Johnston, E. Lim, H. Roh, Sci. of the Total Enviro. 2019, 657, 187-199, https://doi.org/ 10.1016/j.scitotenv.2018.11.483.
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502, https://doi.org/ 10.1021/cr050989d.
G. Knothe, Comprehensive Renewable Energy, Vol 5: Biomass and Biofuel Production 2012, 11-14, https://doi.org/ 10.1016/B978-0-08-087872-0.00502-3.
.[12] A. Kumar, S. Sharma, Renew. Sust. Energ. Rev. 2011, 15, 1791-1800, https://doi.org/ 10.1016/j.rser.2010.11.020.
S. V. Ghadge, H. Raheman, Biores. Tech. 2006, 9|7, 379-384, https://doi.org/ 10.1016/j.biortech.2005.03.014.
S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, M. Natarajan, Renew. Sust. Energ. Rev. 2012, 16, 143-169, https://doi.org/ 10.1016/j.rser.2011.07.143.
Y. Li, W. Kunz, F. Chemat, in Plant Based “Green Chemistry 2.0”: Moving from Evolutionary to Revolutionary (Eds.: Y. Li, F. Chemat), Springer Singapore, Singapore, 2019, pp. 51-87, https://doi.org/ 10.1007/978-981-13-3810-6_3.
M. R. Teixeira, R. Nogueira, L. M. Nunes, Waste Manage 2018, 78, 611-620, https://doi.org/ 10.1016/j.wasman.2018.06.039.
R. Kumar, I. S. Sundari, S. Sen, N. Dasgupta, R. Chidambaram, in Platform Chemical Biorefinery: Future Green Chemistry, 2016, pp. 361-377, https://doi.org/10.1016/b978-0-12-802980-0.00019-5.
X. Li, X. Y. Luo, Y. B. Jin, J. Y. Li, H. D. Zhang, A. P. Zhang, J. Xie, Renew. Sust. Energ. Rev. 2018, 82, 3762-3797, https://doi.org/ 0.1016/j.rser.2017.10.091.
S. Z. Ding, C. M. A. Parlett, X. L. Fan, Molec. Catal. 2022, 523, https://doi.org/ 10.1016/j.mcat.2021.111492.
H. Topsoe, R. G. Egeberg, K. G. Knudsen, H. Topsoe, Abstr. Pap. Am. Chem. Soc. 2004, 228, U659-U659.
H. M. Wang, J. Male, Y. Wang, ACS Cat. 2013, 3, 1047-1070, https://doi.org/ 0.1021/cs400069z.
E. Meller, U. Green, Z. Aizenshtat, Y. Sasson, Fuel 2014, 133, 89-95, https://doi.org/ 10.1016/j.fuel.2014.04.094.
J. P. Zhao, X. C. Cao, P. Liu, F. Long, S. Y. Wu, J. M. Xu, J. C. Jiang, Int. J. of Green E. 2024, 22, 1-8, https://doi.org/ 10.1080/15435075.2024.2430444.
A. Cook, S. Prakash, Y. L. Zheng, S. G. Newman, J. Am. Chem. Soc. 2020, 142, 8109-8115, https://doi.org/ 10.1021/jacs.0c02405.
H. Chang, G. Abdulkareem-Alsultan, Y. H. Taufiq-Yap, S. M. Izham, S. Sivasangar, Fuel 2024, 355, 1-21, https://doi.org/ 10.1016/j.fuel.2023.129459.
S. Chen, M. J. Leng, Z. J. Liao, J. Zeng, H. M. Xie, G. L. Zhou, Ind. C. and Prod. 2024, 211, 1-11, https://doi.org/ 10.1016/j.indcrop.2024.118227.
X. C. Cao, F. Long, G. Y. Zhang, J. M. Xu, J. C. Jiang, ACS Sus. Chem. & Eng. 2021, 9, 9789-9801, https://doi.org/ 10.1021/acssuschemeng.1c02181.
M. Tabandeh, C. K. Cheng, G. Centi, P. L. Show, W. H. Chen, T. C. Ling, H. C. Ong, E. P. Ng, J. C. Juan, S. S. Lam, Molec. Cat. 2022, 523, https://doi.org/10.1016/j.mcat.2020.111207.
T. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298, https://doi.org/ 10.1126/science.aaa8938.
P. V. Ramachandran, A. A. Alawaed, H. J. Hamann, Org. Lett. 2022, 24, 8481-8486, https://doi.org/ 10.1021/acs.orglett.2c03326.
A. John, M. A. Hillmyer, W. B. Tolman, Organometallics 2017, 36, 506-509, https://doi.org/ 10.1021/acs.organomet.6b00940.
S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364-15368, https://doi.org/ 10.1002/anie.201607233.
O. Martínez-Ferraté, B. Chatterjee, C. Werlé, W. Leitner, Catal. Sci. & Tech. 2019, 9, 6370-6378, https://doi.org/10.1039/c9cy01738k.
J. X. Zheng, S. Chevance, C. Darcel, J. B. Sortais, Chem. Comm. 2013, 49, 10010-10012, https://doi.org/10.1039/c3cc45349a.
E. Antico, P. Schlichter, C. Werlé, W. Leitner, JACS Au 2021, 1, 742-749, https://doi.org/ 10.1021/jacsau.1c00140.
L. C. M. Castro, H. Q. Li, J. B. Sortais, C. Darcel, Chem. Comm. 2012, 48, 10514-10516, https://doi.org/10.1039/c2cc35727e.
E. L. Stoll, T. Barber, D. J. Hirst, R. M. Denton, Chem. Comm. 2022, 58, 3509-3512, https://doi.org/10.1039/d1cc03396d.
R. J. Trovitch, Acc. Chem. Res. 2017, 50, 2842-2852, https://doi.org/10.1021/acs.accounts.7b00422.