The dream of seeing molecules and their chemical reactions
PDF (Español)

Keywords

molecular science
scanning probe microscopies
surface science
on-surface synthesis
Views
  • Abstract 46
  • PDF (Español) 44

Abstract

The development of scanning probe microscopes has made possible to observe individual atoms and molecules, even allowing the visualization of chemical bonds. This has given rise to the emergence of on-surface covalent synthesis, a discipline that combines chemistry and physics to construct nanostructures with atomic precision, under very special conditions of ultra-high vacuum (UHV) and two-dimensional confinement. This review introduces this chemical strategy, the local probe microscopy techniques that enable un-precedented resolution, and summarizes its general concepts, such as the design of initial molecular precursors and their subsequent temperature-induced chemical activation on surfaces. In addition, a catalog of representative reactions is presented, and the possibility of moving from these new nanomaterials to functional devices is discussed, together with the main challenges of integration and stability, and future perspectives.

https://doi.org/10.62534/rseq.aq.2090
PDF (Español)

References

J. Warren en The Atomists: Leucippus and Democritus. Fragments, University of Toronto Press, Toronto, 1999. pp. 175.

J. Dalton, A new system of chemical philosophy, Manchester, 1808, https://doi.org/10.5479/sil.324338.39088000885681.

A. Avogadro, Journal de Physique, de Chimie et d'Histoire Naturelle 1811, 73, 58-76.

R. Brown, The Philosophical Magazine and Annals of Philosophy 1828, 4, 161-173, https://doi.org/10.1080/14786442808674769.

A. Einstein, Ann. Phys. (Berlin, Ger.) 1905, 17, 549-560.

J. Perrin, Ann. Chim. Phys. 1909, 18, 5-114.

G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1983, 50, 120-123, https://doi.org/10.1103/PhysRevLett.50.120.

H. Ohtani, R.J. Wilson, S. Chiang, & C.M. Mate, Phys. Rev. Lett. 1988, 60, 2398, https://doi.org/10.1103/PhysRevLett.60.2398.

L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 2009, 325, 1110-1114, https://doi.org/10.1126/science.1176210.

Q. Shen, H.-Y. Gao, H. Fuchs, Nano Today 2017, 13, 77-96, https://doi.org/10.1016/j.nantod.2017.02.007.

S. Clair, D.G. de Oteyza, Chem. Rev. 2019, 119, 4717-4776, https://doi.org/10.1021/acs.chemrev.8b00601.

Q. Sun, R. Zhang, J. Qiu, R. Liu, W. Xu, Adv. Mat. 2018, 30, 1705630, https://doi.org/10.1002/adma.201705630.

L. Gross, B. Schuler, N. Pavliček, S. Fatayer, Z. Majzik, N. Moll, D. Peña, G. Meyer, Angew. Chem., Int. Ed. 2018, 57, 3888-3908, https://doi.org/10.1002/anie.201703509.

E. Meyer, H.J. Hug, R. Bennewitz, Scanning probe microscopy: The lab on a tip, Springer, 2004, https://doi.org/10.1007/978-3-662-09801-1.

O. Krejčí, P. Hapala, M. Ondráček, P. Jelínek, Phys. Rev. B 2017, 95, 045407, https://doi.org/10.1103/PhysRevB.95.045407.

P. Jelínek, J. Phys. Condens. Matter 2017, 29, 343002, https://doi.org/10.1088/1361-648X/aa76c7.

J.V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671-679, https://doi.org/10.1038/nature04166.

R., Otero, F. Rosei, F. Besenbacher, Annu. Rev. Phys. Chem. 2006, 57, 497-525, https://doi.org/10.1146/annurev.physchem.57.032905.104634.

J.M. Gottfried, Surf. Sci. Rep. 2015, 70, 259-379, https://doi.org/10.1016/j.surfrep.2015.04.001.

J.V. Barth, Annu. Rev. Phys. Chem. 2007, 58, 375-407, https://doi.org/10.1146/annurev.physchem.56.092503.141259.

D. Écija, J.I. Urgel, A.P. Seitsonen, W. Auwärter, J.V. Barth, Acc. Chem. Res. 2018, 51, 365-375, https://doi.org/10.1021/acs.accounts.7b00379.

N. Lin, S. Stepanow, M. Ruben, J.V. Barth, en Templates in Chemistry III (Eds.: P. Broekmann, K.-H. Dötz, C.A. Schalley), Springer, Berlín. 2009, pp. 1-44, https://doi.org/10.1007/128_2008_150.

J.V. Barth, Surf. Sci. 2009, 603, 1533-1541, https://doi.org/10.1016/j.susc.2008.09.049.

S.O. Parreiras, J.M. Gallego, D. Écija, Chem. Comm. 2023, 59, 8878-8893, https://doi.org/10.1039/D3CC01496G.

L. Dong, Z.A. Gao, N. Lin, Prog. Surf. Sci. 2016, 91, 101-135, https://doi.org/10.1016/j.progsurf.2016.08.001.

A. Sweetman, N.R. Champness, A. Saywell, Chem. Soc. Rev. 2020, 49, 4189-4202, https://doi.org/10.1039/D0CS00166J.

D. Wang, T. Haposan, J. Fan, Arramel, A.T.S. Wee, ACS Nano 2024, 18, 30919-30942, https://doi.org/10.1021/acsnano.4c10522.

J.M. McIntosh, Organic Chemistry, De Gruyter, 2022, https://doi.org/10.1515/9783110778311.

B. Yang, B. Dong, L. Chi, ACS Nano 2020, 14, 6376-6382, https://doi.org/10.1021/acsnano.0c03766.

L. Talirz, P. Ruffieux, R. Fasel, Adv. Mat. 2016, 28, 6222-6231, https://doi.org/10.1002/adma.201505738.

J.I. Urgel, A. Sánchez-Grande, D.J. Vicent, P. Jelínek, N. Martín, D. Écija, Adv. Mat. 2024, 36, 2402467, https://doi.org/10.1002/adma.202402467.

L. Grill, M. Dyer, L. Lafferentz, M. Persson, M.V. Peters, S. Hecht Nat. Nanotechnol. 2007, 2, 687-691, https://doi.org/10.1038/nnano.2007.346.

L. Dong, P.N. Liu, N. Lin, Acc. Chem. Res. 2015, 48, 2765-2774, https://doi.org/10.1021/acs.accounts.5b00160.

Q. Sun, L. Cai, Y. Ding, H. Ma, C. Yuan, W. Xu, Phys. Chem. Chem. Phys. 2016, 18, 2730-2735, https://doi.org/10.1039/C5CP06459G.

Q. Sun, L. Cai, H. Ma, C. Yuan, W. Xu, Chem. Commun. 2016, 52, 6009-6012, https://doi.org/10.1039/C6CC01059H.

Q. Sun, L. Cai, H. Ma, C. Yuan, W. Xu, ACS Nano 2016, 10, 7023-7030, https://doi.org/10.1021/acsnano.6b03048.

Q. Sun, B.V. Tran, L. Cai, H. Ma, X. Yu, C. Yuan, M. Stöhr, W. Xu, Angew. Chem., Int. Ed. 2017, 56, 12165-12169, https://doi.org/10.1002/anie.201706104.

Q. Sun, X. Yu, M. Bao, M. Liu, J. Pan, Z. Zha, L. Cai, H. Ma, C. Yuan, X. Qiu, W. Xu, Angew. Chem., Int. Ed. 2018, 57, 4035-4038, https://doi.org/10.1002/anie.201801056.

A. Sánchez-Grande, B. de la Torre, J. Santos, B. Cirera, K. Lauwaet, T. Chutora, S. Edalatmanesh, P. Mutombo, J. Rosen, R. Zbořil, R. Miranda, J. Björk, P. Jelínek, N. Martín, D. Écija. Angew. Chem., Int. Ed. 2019, 58, 6559-6563, https://doi.org/10.1002/anie.201814154.

F. Klappenberger, Y.-Q. Zhang, J. Björk, S. Klyatskaya, M. Ruben, J.V. Barth, Acc. Chem. Res. 2015, 48, 2140-2150, https://doi.org/10.1021/acs.accounts.5b00174.

S. Clair, M. Abel, L. Porte, Chem. Commun. 2014, 50, 9627-9635, https://doi.org/10.1039/C4CC02678K.

N.A.A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. J. Am. Chem. Soc. 2008, 130, 6678-6679, https://doi.org/10.1021/ja800906f.

D. Zhong, J.-H. Franke, S.K. Podiyanachari, T. Blömker, H. Zhang, G. Kehr, G. Erker, H. Fuchs, L. Chi, Science 2011, 334, 213-216, https://doi.org/10.1126/science.1211836.

Q. Sun, C. Zhang, H. Kong, Q. Tan, W. Xu, Chem. Commun. 2014, 50, 11825-11828, https://doi.org/10.1039/C4CC05482B.

A. Wiengarten, K. Seufert, W. Auwärter, D. Ecija, K. Diller, F. Allegretti, F. Bischoff, S. Fischer, D.A. Duncan, A.C. Papageorgiou, F. Klappenberger, R.G. Acres, T.H. Ngo, J.V.Barth, J. Am. Chem. Soc. 2014, 136, 9346-9354, https://doi.org/10.1021/ja501680n.

Y. He, M. Garnica, F. Bischoff, J. Ducke, M.-L. Bocquet, M. Batzill, W. Auwärter, J.V. Barth, Nat. Chem. 2017, 9, 33-38, https://doi.org/10.1038/nchem.2600.

Q. Sun, L.M. Mateo, R. Robles, N. Lorente, P. Ruffieux, G. Bottari, T. Torres, R. Fasel, Angew. Chem., Int. Ed. 2021, 60, 16208-16214, https://doi.org/10.1002/anie.202105350.

N. Pavliček, A. Mistry, Z. Majzik, N. Moll, G. Meyer, D.J. Fox, L. Gross, Nature Nanotechnol. 2017, 12, 308-311, https://doi.org/10.1038/nnano.2016.305.

R. Zuzak, R. Dorel, M. Krawiec, B. Such, M. Kolmer, M. Szymonski, A.M. Echavarren, S. Godlewski, ACS Nano 2017, 11, 9321-9329, https://doi.org/10.1021/acsnano.7b04728.

K. Biswas, J.I. Urgel, M.R. Ajayakumar, J. Ma, A. Sánchez-Grande, S. Edalatmanesh, K. Lauwaet, P. Mutombo, J.M. Gallego, R. Miranda, P. Jelínek, X. Feng, D. Écija. Angew. Chem., Int. Ed. 2022, 61, e202114983, https://doi.org/10.1002/anie.202114983.

L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, F. Esch, S. Hecht, L. Grill, Nat. Chem. 2012, 4, 215-220, https://doi.org/10.1038/nchem.1242.

L. Cai, X. Yu, M. Liu, Q. Sun, M. Bao, Z. Zha, J. Pan, H. Ma, H. Ju, S. Hu, L. Xu, J. Zou, C. Yuan, T. Jacob, J. Björk, J. Zhu, X. Qiu, W. Xu, ACS Nano 2018, 12, 7959-7966, https://doi.org/10.1021/acsnano.8b02459.

F. Kang, W. Gao, L. Cai, C. Li, C. Yuan, W. Xu, J. Phys. Chem. C 2021, 125, 23840-23847, https://doi.org/10.1021/acs.jpcc.1c08003.

C.-H. Shu, M.-X. Liu, Z.-Q. Zha, J.-L. Pan, S.-Z. Zhang, Y.-L. Xie, J.-L. Chen, D.-W. Yuan, X.-H. Qiu, P.-N. Liu, Nat. Commun. 2018, 9, 2322, https://doi.org/10.1038/s41467-018-04681-z.

S. Kawai, A. Ishikawa, S-I. Ishida, T. Yamakado, Y. Ma, K. Sun, Y. Tateyama, R. Pawlak, E. Meyer, S. Saito, A. Osuka. Angew. Chem., Int. Ed. 2022, 61, e202114697, https://doi.org/10.1002/anie.202114697.

B. Cirera, A. Sánchez-Grande, B. de la Torre, J. Santos, S. Edalatmanesh, E. Rodríguez-Sánchez, K. Lauwaet, B. Mallada, R. Zbořil, R. Miranda, O. Gröning, P. Jelínek, N. Martín, D. Ecija, Nat. Nanotechnol. 2020, 15, 437-443, https://doi.org/10.1038/s41565-020-0668-7.

D.J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao, H. Rodriguez, S.G. Louie, M.F. Crommie, F.R. Fischer. Nature 2018, 560, 204-208, https://doi.org/10.1038/s41586-018-0376-8.

H.-Y. Gao, H. Wagner, D. Zhong, J.-H. Franke, A. Studer, H. Fuchs. Angew. Chem., Int. Ed. 2013, 52, 4024-4028, https://doi.org/10.1002/anie.201208597.

J. Liu, P. Ruffieux, X. Feng, K. Müllen, R. Fasel, Chem. Commun. 2014, 50, 11200-11203, https://doi.org/10.1039/C4CC02859G.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M.Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470-473, https://doi.org/10.1038/nature09211.

Z. Chen, A. Narita, K. Müllen, Adv. Mat. 2020, 32, 2001893, https://doi.org/10.1002/adma.202001893.

L. Jiang, A.C. Papageorgiou, S.C. Oh, Ö. Sağlam, J. Reichert, D.A. Duncan, Y.-Q. Zhang, F. Klappenberger, Y. Guo, F. Allegretti, S. More, R. Bhosale, A. Mateo-Alonso, J.V. Barth, ACS Nano 2016, 10, 1033-1041, https://doi.org/10.1021/acsnano.5b06340.

S. Mishra, D. Beyer, K. Eimre, S. Kezilebieke, R. Berger, O. Gröning, C.A. Pignedoli, K. Müllen, P. Liljeroth, P. Ruffieux, X. Feng, R. Fasel. Nat. Nanotechnol. 2020, 15, 22-28, https://doi.org/10.1038/s41565-019-0577-9.

D.G. de Oteyza, T. Frederiksen, J. Phys. Cond. Matter 2022, 34, https://doi.org/10.1088/1361-648X/ac8a7f.

K. Biswas, M. Urbani, A. Sánchez-Grande, D. Soler-Polo, K. Lauwaet, A. Matěj, P. Mutombo, L. Veis, J. Brabec, K. Pernal, J.M. Gallego, R. Miranda, D. Écija, P. Jelínek, T. Torres, J.I. Urgel, J. Am. Chem. Soc. 2022, 144, 12725-12731, https://doi.org/10.1021/jacs.2c02700.

K. Biswas, J. Janeiro, A. Gallardo, M. Lozano, A. Barragán, B. Álvarez, D. Soler-Polo, O. Stetsovych, A. Pinar Solé, K. Lauwaet, J.M. Gallego, D. Pérez, R. Miranda, J.I. Urgel, P. Jelínek, D. Peña, D. Écija. Nat. Synth. 2024, 4, 233-242, https://doi.org/10.1038/s44160-024-00665-8.

A. Kinikar, M. Di Giovannantonio, J.I. Urgel, K. Eimre, Z. Qiu, Y. Gu, E. Jin, A. Narita, X.-Y. Wang, K. Müllen, P. Ruffieux, C.A. Pignedoli, R. Fasel. Nat. Synth. 2022, 1, 289-296, https://doi.org/10.1038/s44160-022-00032-5.

A. Barragán, M. Urbani, A. Gallardo, E. Pérez-Elvira, Ó. Jover, K. Lauwaet, J.M. Gallego, R. Miranda, M. Di Giovannantonio, D. Écija, T. Torres, J.I. Urgel. Small 2025, 21, 2408085, https://doi.org/10.1002/smll.202408085.

F. Albrecht, I. Rončević, Y. Gao, F. Paschke, A. Baiardi, I. Tavernelli, S. Mishra, H.L. Anderson, L. Gross, Science 2024, 384, 677-682, https://doi.org/10.1126/science.ado1399.

K. Kaiser, L.M. Scriven, F. Schulz, P. Gawel, L. Gross, and H.L. Anderson. Science 2019, 365, 1299-1301, https://doi.org/10.1126/science.aay1914.

Y. Gao, F. Albrecht, I. Rončević, I. Ettedgui, P. Kumar, L.M. Scriven, K.E. Christensen, S. Mishra, L. Righetti, M. Rossmannek, I. Tavernelli, H.L. Anderson, L. Gross. Nature 2023, 623, 977-981, https://doi.org/10.1038/s41586-023-06566-8.

L. Sun, W. Zheng, W. Gao, F. Kang, M. Zhao, W. Xu. Nature 2023, 623, 972-976, https://doi.org/10.1038/s41586-023-06741-x.

F. Albrecht, S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Science 2022, 377, 298-301, https://doi.org/10.1126/science.abo6471.

E. Pérez-Elvira, A. Barragán, Q. Chen, D. Soler-Polo, A. Sánchez-Grande, D.J. Vicent, K. Lauwaet, J. Santos, P. Mutombo, J.I. Mendieta-Moreno, B. de la Torre, J.M. Gallego, R. Miranda, N. Martín, P. Jelínek, J.I. Urgel, D. Écija. Nat. Synth. 2023, 2, 1159-1170, https://doi.org/10.1038/s44160-023-00390-8.

E. Pérez-Elvira, A. Barragán, A. Gallardo, J. Santos, C. Martín-Fuentes, K. Lauwaet, J.M. Gallego, R. Miranda, H. Sakurai, J.I. Urgel, J. Björk, N. Martín, D. Écija. Angew. Chem., Int. Ed. 2025, 64, e202414583, https://doi.org/10.1002/anie.202414583.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Anales de Química de la RSEQ