Molecular nanographenes: The legacy of benzene in carbon chemistry
PDF (Español)

Keywords

Carbon
Aromaticy
Graphene
Nanographenes
Benzene
Views
  • Abstract 36
  • PDF (Español) 26

Abstract

The article outlines carbon’s structural versatility and the conceptual path from benzene to carbon nanomaterials. It reviews aromaticity, from Kekulé’s proposals to Hückel’s and Clar’s rules, explaining stability and reactivity in polycyclic aromatic hydrocarbons. It then examines graphene and other 2D materials, followed by nanographenes whose electronic properties depend on size, edge structure, and defects. Molecular nanographenes with induced chirality are discussed, emphasizing how racemization barriers control chiroptical behavior. The article concludes with chiral bilayer nanographenes, showing how interlayer overlap governs their electrochemical and photophysical properties, establishing bilayer effects as a design tool for tuning optoelectronic performance.

https://doi.org/10.62534/rseq.aq.2099
PDF (Español)

References

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736-12737, https://doi.org/10.1021/ja040082h.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162-163, https://doi.org/10.1038/318162a0.

S. Iijima, Nature 1991, 354, 56-58, https://doi.org/10.1038/354056a0.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666-669, https://doi.org/10.1126/science.1102896.

J. Li, Y. Han, Giant 2023, 13, 100140, https://doi.org/10.1016/j.giant.2023.100140.

J. D. Bernal, Proc. R. Soc. Lond. A 1924, 106, 749-773, https://doi.org/10.1098/rspa.1924.0101.

J. L. Delgado, M. A. Herranz, N. Martin, J. Mater. Chem. 2008, 18, 1417-1426, https://doi.org/10.1039/B717218D.

M. Faraday, Phil. Trans. R. Soc. 1825, 115, 440-466, https://doi.org/10.1098/rstl.1825.0022.

E. Mitscherlich, Ann. Pharm. 1834, 9, 39-48, https://doi.org/10.1002/jlac.18340090103.

A. W. Hofmann, Proc. R. Soc. Lond. 1856, 8, 1-3, https://doi.org/10.1098/rspl.1856.0002.

A. Kekule, Bull. Soc. Chim. Fr. 1865, 3, 98-110.

L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 2009, 325, 1110-1114, https://doi.org/10.1126/science.1176210.

A. J. Rocke, Angew. Chem. Int. Ed. 2015, 54, 46-50, https://doi.org/10.1002/anie.201408034.

E. Huckel, Z. Physik 1931, 70, 204-286, https://doi.org/10.1007/BF01339530.

E. Huckel, Z. Physik 1931, 72, 310-337, https://doi.org/10.1007/BF01341953.

E. Clar, The Aromatic Sextet, Wiley, New York, 1972.

M. Sola, Front. Chem. 2013, 1, 22, https://doi.org/10.3389/fchem.2013.00022.

G. Merino, M. Sola, I. Fernandez, C. Foroutan-Nejad, P. Lazzeretti, G. Frenking, H. L. Anderson, D. Sundholm, F. P. Cossio, M. A. Petrukhina, J. Wu, J. I. Wu, A. Restrepo, Chem. Sci. 2023, 14, 5569-5576, https://doi.org/10.1039/D2SC04998H.

P. v. R Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318, https://doi.org/10.1021/ja960582d.

Z. Chen, C. S. Wannere, C. Corminboeuf, R Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888, https://doi.org/10.1021/cr030088.

R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214-3220, https://doi.org/10.1021/jp0034426.

D. Geuenich, K. Hess, F. Kohler, R. Herges, Chem. Rev. 2005, 105, 3758-3772, https://doi.org/10.1021/cr0300901.

L. J. Pauling, Chem. Phys. 1936, 4, 673-677, https://doi.org/10.1063/1.1749766.

P. v. R Schleyer, Chem. Rev. 2001, 101, 1115-1118, https://doi.org/10.1021/cr0103221.

R. Anschutz, August Kekulé. Vol 2, 941-942, Verlag Chemie, Berlin, 1929.

X.-Y. Wang, X. Yao, K. Mullen, Sci. China Chem. 2019, 62, 1099-1144, https://doi.org/10.1007/s11426-019-9491-2.

A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183-191, https://doi.org/10.1038/nmat1849.

A. K. Worku, D. W. Ayele, Results Chem. 2023, 5, 100971, https://doi.org/10.1016/j.rechem.2023.100971.

P. Izquierdo-Garcia, J. M. Fernandez-Garcia, N. Martin, J. Am. Chem. Soc. 2024, 47, 32222-32234, https://doi.org/10.1021/jacs.4c12819.

K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439, https://doi.org/10.1126/science.aac9439.

Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43-50, https://doi.org/10.1038/nature26160.

Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero, Nature 2018, 556, 80-84, https://doi.org/10.1038/nature26154.

E. Meirzadeh, A. M. Evans, M. Rezaee, M. Milich, C. J. Dionne, T. P. Darlington, S.T. Bao, A. K. Bartholomew, T. Handa, D. J. Rizzo, R. A. Wiscons, M. Reza, A. Zangiabadi, N. Fardian-Melamed, A. C. Crowther, P. J. Schuck, D. N. Basov, X. Zhu, A. Giri, P. E. Hopkins, P. Kim, M. L. Steigerwald, J. Yang, C. Nuckolls, X. Roy, Nature 2023, 613, 71-76, https://doi.org/10.1038/s41586-022-05401-w.

P. Tian, L. Tang, K. S. Teng, S. P. Lau, Mater. Today Chem. 2018, 10, 221-258, https://doi.org/10.1016/j.mtchem.2018.09.007.

Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Adv. Mater. 2019, 31, 1808283, https://doi.org/10.1002/adma.201808283.

L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science 2008, 320, 356-358, https://doi.org/10.1126/science.1154663.

Y. Gu, Z. Qiu, K. Mullen, J. Am. Chem. Soc. 2022, 144, 11499-11524, https://doi.org/10.1021/jacs.2c02491.

N. Martin, C. Nuckolls, Eds. Molecular Nanographenes: Synthesis, Properties, and Applications, Wiley, New York, 2025, https://doi.org/10.1002/9783527845019.

L. Chen, Y. Hernandez, X. Feng, K. Mullen, Angew. Chem. Int. Ed. 2012, 51, 7640-7654, https://doi.org/10.1002/anie.201201084.

Lord Kelvin, J. Oxford Univ. Junior Sci. Club 1894, 18, 25.

M. Rickhaus, M. Mayor, M. Juriček, Chem. Soc. Rev. 2017, 46, 1643-1660, https://doi.org/10.1039/C6CS00623J.

M. Rickhaus, M. Mayor, M. Juriček, Chem. Soc. Rev. 2016, 45, 1542-1556, https://doi.org/10.1039/C5CS00620A.

A. D. McNaught and A. Wilkinson, Eds. IUPAC Compendium of Chemical Terminology, (the "Gold Book"), Blackwell Scientific Publications, Oxford, 1997, https://doi.org/10.1351/goldbook.

M. Rickhaus, L. Jundt, M. Mayor, Chimia 2016, 70, 192-202, https://doi.org/10.2533/chimia.2016.192.

J. M. Fernandez-Garcia, P. Izquierdo-Garcia, M. Buendia, S. Filippone, N. Martin, Chem. Commun. 2022, 58, 2634-2645, https://doi.org/10.1039/D1CC06561K.

J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Mullen, J. Am. Chem. Soc. 2015, 137, 6097-6103, https://doi.org/10.1021/jacs.5b03017.

K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739-744, https://doi.org/10.1038/nchem.1704.

T. Kirschbaum, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2020, 59, 270-274, https://doi.org/10.1002/anie.201912213.

C. M. Cruz, I. R. Marquez, I. F. A. Mariz, V. Blanco, C. Sanchez-Sanchez, J. M. Sobrado, J. A. Martin-Gago, J. M. Cuerva, E. Macoas, A. G. Campana, Chem. Sci. 2018, 9, 3917-3924, https://doi.org/10.1039/C8SC00427G.

S. H. Pun, K. M. Cheung, D. Yang, H. Chen, Y. Wang, S. V. Kershaw, Q. Miao, Angew. Chem. Int. Ed. 2022, 61, e202113203, https://doi.org/10.1002/anie.202113203.

M. A. Medel, R. Tapia, V. Blanco, D. Miguel, S. P. Morcillo, A. G. Campana, Angew. Chem. Int. Ed. 2021, 60, 6094-6100, https://doi.org/10.1002/anie.202015368.

V. Kumar, J. L. Paez, S. Miguez-Lago, J. M. Cuerva, C. M. Cruz, A. G. Campana, Chem. Soc. Rev. 2025, 54, 4922-4947, https://doi.org/10.1039/D4CS00745J.

P. Izquierdo-Garcia, J. Lion-Villar, J. M. Fernandez-Garcia, N. Martin, Chem. Soc. Rev. 2025, https://doi.org/10.1039/D4CS00804A.

P. J. Evans, J. Ouyang, L. Favereau, J. Crassous, I. Fernandez, J. Perles, N. Martin, Angew. Chem. Int. Ed. 2018, 57, 6774-6779, https://doi.org/10.1002/anie.201800798.

P. Izquierdo-Garcia, J. M. Fernandez-Garcia, S. Medina Rivero, M. Šamal, J. Rybaček, L. Bednarova, S. Ramirez-Barroso, F. J. Ramirez, R. Rodriguez, J. Perles, D. Garcia-Fresnadillo, J. Crassous, J. Casado, I. G. Stara, N. Martin, J. Am. Chem. Soc. 2023, 145, 11599-11610, https://doi.org/10.1021/jacs.3c01088.

E. M. Sanchez-Carnerero, A. R. Agarrabeitia, F. Moreno, B. L. Maroto, G. Muller, M. J. Ortiz, S. de la Moya, Chem. Eur. J. 2015, 21, 13488-13500, https://doi.org/10.1002/chem.201501178.

L. Yang, Y.-Y. Ju, M. A. Medel, Y. Fu, H. Komber, E. Dmitrieva, J.-J. Zhang, S. Obermann, A. G. Campana, J. Ma, X. Feng, Angew. Chem. Int. Ed. 2023, 62, e202216193, https://doi.org/10.1002/anie.202216193.

Y.-J. Shen, N.-T. Yao, L.-N. Diao, Y. Yang, X.-L. Chen, H.-Y. Gong, Angew. Chem. Int. Ed. 2023, 62, e202300840, https://doi.org/10.1002/anie.202300840.

Y.-Y. Ju, L. Chai, K. Li, J.-F. Xing, X.-H. Ma, Z.-L. Qiu, X.-J. Zhao, J. Zhu, Y.-Z. Tan, J. Am. Chem. Soc. 2023, 145, 2815-2821, https://doi.org/10.1021/jacs.2c08746.

J. Lion-Villar, J. M. Fernandez-Garcia, S. Medina Rivero, J. Perles, S. Wu, D. Aranda, J. Wu, S. Seki, J. Casado, N. Martin, Nat. Chem. 2025, 17, 1099-1106, https://doi.org/10.1038/s41557-025-01810-2.

M. Buendia, J. M. Fernandez-Garcia, J. Perles, S. Filippone, N. Martin, Nat. Synth. 2024, 3, 545-553, https://doi.org/10.1038/s44160-024-00484-x.

F. Morita, Y. Kishida, Y. Sato, H. Sugiyama, M. Abekura, J. Nogami, N. Toriumi, Y. Nagashima, T. Kinoshita, G. Fukuhara, M. Uchiyama, H. Uekusa, K. Tanaka, Nat. Synth. 2024, 3, 774-786, https://doi.org/10.1038/s44160-024-00527-3.

P. Izquierdo-Garcia, J. M. Fernandez-Garcia, J. Perles, N. Martin, J. Am. Chem. Soc. 2024, 146, 34943-34949, https://doi.org/10.1021/jacs.4c14544.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Anales de Química de la RSEQ