El modelo Push-Pull como estrategia de activación y estabilización molecular
PDF

Palabras clave

push-pull
donador-aceptor
química cooperativa
activación molecular
complejos bimetálicos
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Anales de Química de la RSEQ

Visualizaciones
  • Resumen 1
  • PDF 0

Resumen

En este trabajo revisamos el concepto de Push-Pull (donador-aceptor) como estrategia para activación de moléculas inertes o para la estabilización de fragmentos altamente reactivos. Este modelo se basa en la combinación de un centro rico y un centro pobre en electrones que, de manera concertada, son capaces de donar (push) y retirar (pull) densidad electrónica de otro fragmento molecular. En esta perspectiva se describen diversos ejemplos que demuestran el interés y aplicabilidad de esta estrategia, incluyendo tanto sistemas que permiten activar moléculas poco reactivas como CO2 o N2, como otros que permiten la estabilización de fragmentos muy reactivas como LiH o LiMe.

https://doi.org/10.62534/rseq.aq.2018
PDF

Citas

R. F. Service, Science 1999, 285, 184–187, https://doi.org/10.1126/science.285.5425.184

D. R. MacFarlane, A. N. Simonov, T. M. Vu, S. Johnstona, L. M. Azofra, Faraday Discuss. 2023, 243, 557–570, https://doi.org/10.1039/D3FD00087G.

D, Singh, W. R. Buratto, J. F. Torres, L. J. Murray, Chem. Rev. 2020, 120, 5517–5581, https://doi.org/10.1021/acs.chemrev.0c00042.

S. Kim, F. Loose, P. J. Chirik, Chem. Rev. 2020, 120, 5637–5681, https://doi.org/10.1021/acs.chemrev.9b00705.

C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183-5191, https://doi.org/10.1039/C4CS00085D.

R. M. Andrew, G. P. Peters, 2022, The Global Carbon Project's fossil CO2 emissions dataset (2022v27), https://doi.org/10.5281/zenodo.7215364.

M. Y. Darensbourg, A. Llobet, Inorg. Chem. 2016, 55, 371-377, https://doi.org/10.1021/acs.inorgchem.5b02925.

B. Milani, G. Licini, E. Clot, M. Albrecht, Dalton Trans. 2016, 45, 14419-14420, https://doi.org/10.1039/C6DT90140A.

O. Einsle, D. C. Rees, Chem. Rev. 2020, 120, 12, 4969–5004, https://doi.org/10.1021/acs.chemrev.0c00067.

L. C. Seefeldt, Z.-Y. Yang, D. A. Lukoyanov, D. F. Harris, D. R. Dean, S. Raugei, B. M. Hoffman, Chem. Rev. 2020, 120, 5082–5106, https://doi.org/10.1021/acs.chemrev.9b00556.

K. Tanifuji, Y. Ohki, Chem. Rev. 2020, 120, 5194–5251, https://doi.org/10.1021/acs.chemrev.9b00544.

J. H. Jeoung, H. Dobbek, Science 2007, 318, 1461–1464, https://doi.org/10.1126/science.1148481.

Y. Li, M. Gomez-Mingot, T. Fogeron, M. Fontecave, Acc. Chem. Res. 2021, 54, 4250–4261, https://doi.org/10.1021/acs.accounts.1c00461

M. Perez-Jimenez, H. Corona, F. de la Cruz-Martínez, J. Campos, Chem. Eur. J. 2023, e202301428, https://doi.org/10.1002/chem.202301428.

A. J. Ruddy, D. M. C. Ould, P. D. Newman, R. L. Melen, Dalton Trans. 2018, 47, 10377–10381, https://doi.org/10.1039/C8DT01168K.

D. Specklin, M-C. Boegli, A. Coffinet, L. Escomel, L. Vendier, M. Grellier, A. Simmoneau, Chem. Sci. 2023, 14, 14262–14270, https://doi.org/10.1039/D3SC04390H.

A. Braaksma, H. Haaker, H. J. Grande, C. Veeger, Eur. J. Biochem. 1982, 121, 483–491, https://doi.org/10.1111/j.1432-1033.1982.tb05813.x.

A. S. Borovik, Acc. Chem. Res. 2005, 38, 54–61, https://doi.org/10.1021/ar030160q.

T. Spatzal, K. A. Perez, O. Einsle, J. B. Howard, D. C. Rees, Nature 2014, 345, 1620–1623, https://doi.org/10.1126/science.1256679

J. B. Geri, J. P. Shanahan, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 5952–5956, https://doi.org/10.1021/jacs.7b01982.

X. Zheng, I. Zulkifly, A. Heilmann, C. McManus, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 16416–16419, https://doi.org/10.1002/ange.202106413.

Z. Mo, E. L. Kolychev, A. Rit, J. Campos, H. Niu, S. Aldridge, J. Am. Chem. Soc. 2015, 137, 12227–12230, https://doi.org/10.1021/jacs.5b08614.

J. Sinclair, G. Dai, R. McDonald, M. J. Ferguson, A. Brown, E. Rivard, Inorg. Chem. 2020, 59, 10996–11008, https://doi.org/10.1021/acs.inorgchem.0c01492

D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441, https://doi.org/10.1002/anie.201409800

A. J. Ruddy, D. M. C. Ould, P. D. Newman, R. L. Melen, Dalton Trans. 2018, 47, 10377–10381, https://doi.org/10.1039/C8DT01168K.

A. Simonneau, R. Turrel, L. Vendier, M. Etienne. Angew. Chem. Int. Ed. 2017, 56, 12268–12272. DOI: https://doi.org/10.1002/anie.201706226.

M. Navarro, J. J. Moreno, M. Pérez-Jiménez, J. Campos, Chem. Commun. 2022, 58, 11220–11235, https://doi.org/10.1039/D2CC04296G.

N. Jori, J. J. Moreno, R. A. K. Shivaraam, T. Rajeshkumar, R. Scopelliti, L. Maron, J. Campos, M. Mazzanti, Chem. Sci. 2024, 15, 6842–6852, https://doi.org/10.1039/D4SC01050G.

E. A. Boyd, J. C. Peters J. Am. Chem. Soc. 2023, 145, 14784-14792, https://doi.org/10.1021/jacs.3c03352.

M. Hirano, M. Akita, K. Tani, K. Kumagai, N. Kasuga, A. Fukuoka, S. Komiya. Organometallics 1997, 16, 4206–4213, https://doi.org/10.1021/om960743m.

L. Escomel, I. Del Rosal, L. Maron, E. Jeanneau, L. Veyre, C. Thieuleux, C. Camp, J. Am. Chem. Soc. 2021, 143, 4844–4856, https://doi.org/10.1021/jacs.1c01725.

S. Sinhababu, M. R. Radzhabov, J. Tesler, N. P. Mankad. J. Am. Chem. Soc. 2022, 144, 3210–3221, https://doi.org/10.1021/jacs.1c13108.

C. McManus, J. Hicks, X. Cui, L. Zhao, G. Frenking, J. M. Goicoechea, S. Aldridge, Chem. Sci. 2021, 12, 13458–13468, https://doi.org/10.1039/D1SC04676D.

H. Corona, M. Pérez-Jiménez, F. de la Cruz-Martínez, I. Fernández, J. Campos, Angew. Chem. Int. Ed. 2022, 61, e202207581, https://doi.org/10.1002/ange.202207581.

L. Escomel, Q. Le Dé, M. Benonie, L. Vendier, A. Simonneau, Chem. Commun., 2024, 60, 13235-13238, https://doi.org/10.1039/D4CC02349H.

J. Campos, J. Nat. Rev. Chem. 2020, 4, 696, https://doi.org/10.1038/s41570-020-00226-5.

J. Campos, J. Am. Chem. Soc. 2017, 139, 8, 2944–2947, https://doi.org/10.1021/jacs.7b00491.

N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. López-Serrano, J. Campos, Chem. Eur. J. 2020, 26, 5982–5993, https://doi.org/10.1002/chem.201905793.

N. Hidalgo, J. J. Moreno, M. Pérez-Jiménez, C. Maya, J. López-Serrano, J. Campos, Organometallics 2020, 39, 2534–2544, https://doi.org/10.1021/acs.organomet.0c00330.

L. F. Dahl, E. Ishishi, R. E. Rundle, J. Chem. Phys. 1957, 26, 1750–1751, https://doi.org/10.1063/1.1743615.

F. A. Cotton, N. F. Curtis, C. B. Harris, B. F. G. Johnson, S. J. Lippard, J. T. Mague, W. R. Robinson, J. S. Wood, Science 1964, 145, 1305–1307, https://doi.org/10.1126/science.145.3638.1305.

T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger G. J. Long, P. P. Power, Science 2005, 310, 844–847, https://doi.org/10.1126/science.1116789.

N. V. S. Harisomayajula, A. K. Nair, Y.-C. Tsai, Chem. Commun. 2014, 50, 3391–3412, https://doi.org/10.1039/C3CC48203K.

A. Noor, G. Glatz, R. Müller, M. Kaupp, S. Demeshko, R. Kempe, Nat. Chem. 2009, 1, 322–325, https://doi.org/10.1038/nchem.255.

A. Noor, S. Qayyum, T. Bauer, S. Schwarz, B. Weber, R. Kempe, Chem. Commun. 2014, 50, 13127–13130, https://doi.org/10.1039/C4CC05071A.

C. Schwarzmaier, A. Noor, G. Glatz, M. Zabel, A. Y. Timoshkin, B. M. Cossairt, C. C. Cummins, R. Kempe, M. Scheer, Angew. Chem. Int. Ed. 2011, 50, 7283–7286, https://doi.org/10.1002/anie.201102361.

J. Shen, G. P. A. Yap, K. H. Theopold, Chem. Commun. 2014, 50, 2579–2581, https://doi.org/10.1039/C3CC48746F.

Y.-S. Huang, G.-T. Huang, Y.-L. Liu, J.-S. K. Yu, Y.-C. Tsai, Angew. Chem. Int. Ed. 2017, 56, 15427–15431, https://doi.org/10.1002/ange.201709583.

H. Z. Chen, S.-C. Liu, C.-H. Yen, J.-S. K. Yu, Y.-J. Shieh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 10342–10346, https://doi.org/10.1002/anie.201205027.

K. M. Gramigna, D. A. Dickie, B. M. Foxman, C. M. Thomas, ACS Catal. 2019, 9, 3153–3164, https://doi.org/10.1021/acscatal.8b04390

M. Pérez-Jiménez, J. Campos, J. López-Serrano, E. Carmona, Chem. Commun. 2018, 54, 9186–9189, https://doi.org/10.1039/C8CC04945A.

M. Pérez-Jiménez, N. Curado, C. Maya, J. Campos, E. Ruiz, S. Álvarez, E. Carmona, Chem. – Eur. J. 2021, 27, 6569–6578, https://doi.org/10.1002/chem.202004948.

J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481–11503, https://doi.org/10.1039/c2cc35304k.

M. Pérez-Jiménez, J. Campos, J. Jover, S. Álvarez, E. Carmona, Organometallics 2022, 41, 3225–3236, https://doi.org/10.1021/acs.organomet.2c00216.

P. Jochmann, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 52: 9831–9835, https://doi.org/10.1002/anie.201303968.

M. Pérez-Jiménez, N. Curado, C. Maya, J. Campos, J. Jover, S. Álvarez, E. Carmona, J. Am. Chem. Soc. 2021, 143, 5222–5230, https://doi.org/10.1021/jacs.1c01602.

K. Fischer, K. Jonas, P. Misbach, R. Stabba, G. Wilke, Angew. Chem. Int. Ed. Engl. 1973, 12, 943–953, https://doi.org/10.1002/anie.197309431.

V. Gessner, C. Däschlein, C. Strohmann, Chem. – Eur. J. 2009, 15, 3320–3334, https://doi.org/10.1002/chem.200900041.

M. Pérez-Jiménez, J. Campos, J. Jover, S. Álvarez, E. Carmona, Angew. Chem. Int. Ed. 2022, 61, e202116009, https://doi.org/10.1002/anie.202116009.

M. Perez-Jimenez, J. Campos, Polyhedron 2023, 244, 116610, https://doi.org/10.1016/j.poly.2023.116610.