Abstract
Molecular aromaticity, like so many other basic notions in chemistry, is not a well-defined concept due to its unobservable nature. Despite its imprecise nature, it is a concept of utmost importance. In this review, we first briefly review the history of aro-maticity and its quantum nature. We demonstrate that, despite the lack of a precise definition, several very simple electron-counting rules exist that are followed by a large number of organic and inorganic aromatic compounds. Finally, we comment on the main types of aromaticity and analyze the most common ways of quantifying aromaticity, highlighting the fact that different descriptors do not speak always with the same voice.
References
M. Faraday, Philos. Trans. R. Soc. London 1825, 115, 440-446, https://doi.org/10.1098/rstl.1825.0022.
E. Mitscherlich, Ann. Pharm. 1834, 9, 39-48, https://doi.org/10.1002/jlac.18340090103.
A. W. Hofmann, Proc. R. Soc. Lond. 1856, 8, 1-3, https://doi.org/10.1098/rspl.1856.0002.
A. Kekule, Bull. Soc. Chim. Fr. (Paris) 1865, 3, 98-110.
T. Anderson, Trans. R. Soc. Edinburgh 1868, 25, 205-216, https://doi.org/10.1039/JS8692200406.
R. Willstatter, E. Waser, Ber. Dtsch Chem. Ges. 1911, 44, 3423-3445, https://doi.org/10.1002/cber.191104403216.
A. Stock, E. Pohland, Ber. Dtsch Chem. Ges. 1926, 59, 2215-2223, https://doi.org/10.1002/cber.19260590907.
K. Lonsdale, Trans. Faraday Soc. 1929, 25, 352-366, https://doi.org/10.1039/TF9292500352.
E. Huckel, Z. Physik 1931, 70, 204-286, https://doi.org/10.1007/BF01339530.
E. Huckel, Z. Physik 1931, 72, 310-337, https://doi.org/10.1007/BF01341953.
E. Huckel, Z. Physik 1932, 76, 628-648, https://doi.org/10.1007/BF01341936.
E. Huckel, Z. Elektrochemie 1937, 43, 827-849, https://doi.org/10.1002/bbpc.19370431016.
W. v. E. Doering, F. L. Detert, J. Am. Chem. Soc. 1951, 73, 876-877, https://doi.org/10.1021/ja01146a537.
E. Wigner, F. Seitz, Phys. Rev. 1933, 43, 804-810, https://doi.org/10.1103/PhysRev.43.804.
Z. Luo, A. W. Castleman, Acc. Chem. Res. 2014, 47, 2931-2940, https://doi.org/10.1021/ar5001583.
J. Poater, M. Sola, Chem. Commun. 2019, 55, 5559-5562, https://doi.org/10.1039/C9CC02067E.
M. G. Evans, E. Warhust, Trans. Faraday Soc 1938, 34, 614-624, https://doi.org/10.1039/TF9383400614.
W. v. E. Doering, L. H. Knox, J. Am. Chem. Soc. 1954, 76, 3203-3206, https://doi.org/10.1021/ja01641a027.
C. E. Johnson, F. A. Bovey, J. Chem. Phys. 1958, 29, 1012-1014, https://doi.org/10.1063/1.1744645.
H. C. Longuet-Higgins, L. Salem, Proc. Roy. Soc. A 1959, 251,172-185.
S. Winstein, J. Am. Chem. Soc. 1959, 81, 6524-6525, https://doi.org/10.1021/ja01533a052.
W. N. Lipscomb, A. R. Pitochelli, M. F. Hawthorne, J. Am. Chem. Soc. 1959, 81, 5833-5834, https://doi.org/10.1021/ja01530a073.
W. H. Knoth, H. C. Miller, D. C. England, G. W. Parshall, E. L. Muetterties, J. Am. Chem. Soc. 1962, 84, 1056-1057, https://doi.org/10.1021/ja00865a040.
E. Heilbronner, Tetrahedron Lett. 1964, 5, 1923-1928, https://doi.org/10.1016/S0040-4039(01)89474-0.
D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 2003, 426,819-821, https://doi.org/10.1038/nature02224.
E. Clar, The Aromatic Sextet, Wiley, New York, 1972, https://doi.org/10.1002/zfch.19730130531.
M. Sola, Front. Chem. 2013, 1, 22, https://doi.org/10.3389/fchem.2013.00022.
C. Glidewell, D. Lloyd, Tetrahedron 1984, 40, 4455-4472, https://doi.org/10.1016/S0040-4020(01)98821-0.
N. C. Baird, J. Am. Chem. Soc. 1972, 94, 4941-4948, https://doi.org/10.1021/ja00769a025.
R. Breslow, H. W. Chang, R. Hill, E. Wasserman, J. Am. Chem. Soc. 1967, 89, 1112-1119, https://doi.org/10.1021/ja00981a015.
M. Saunders, R. Berger, A. Jaffe, J. M. McBride, J. O’Neill, R. Breslow, J. M. Hoffmann Jr., C. Perchonock, E. Wasserman, R.S. Hutton, V. J. Huck, J. Am. Chem. Soc. 1973, 95, 3017-3018, https://doi.org/10.1021/ja00790a049.
M. J. S. Dewar, Bull. Soc. Chim. Belg. 1979, 88, 957-967, https://doi.org/10.1002/bscb.19790881201.
J. Chandrasekhar, E. D. Jemmis, P. v. R. Schleyer, Tetrahedron Lett. 1979, 20, 3707-3710, https://doi.org/10.1016/S0040-4039(01)95503-0.
G. P. Elliott, W. R. Roper, J. M. Waters, J. Chem. Soc., Chem. Commun. 1982, 811-813, https://doi.org/10.1039/C39820000811.
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162-163, https://doi.org/10.1038/318162a0.
A. Hirsch, Z. Chen, H. Jiao, Angew. Chem. Int. Ed. 2000, 39, 3915-3917, https://doi.org/10.1002/1521-3773(20001103)39:21<3915::AID-ANIE3915>3.0.CO;2-O.
P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318, https://doi.org/10.1021/ja960582d.
M. Buhl, C. van Wullen, Chem. Phys. Lett. 1995, 247, 63-68, https://doi.org/10.1016/0009-2614(95)01193-6.
M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos, A. P. de Figueiredo, Phys. Chem. Chem. Phys. 2000, 2, 3381-3392, https://doi.org/10.1039/B002009P.
A. E. Kuznetsov, K. A. Birch, A. I. Boldyrev, H.-J. Zhai, L.-S. Wang, Science 2003, 300, 622-625, https://doi.org/10.1126/science.1082477.
H.-J. Zhai, B. B. Averkiev, D. Y. Zubarev, L.-S. Wang, A. I. Boldyrev, Angew. Chem. Int. Ed. 2007, 46, 4277-4280, https://doi.org/10.1002/anie.200700442.
M. Hoffmann, C. J. Wilson, B. Odell, H. L. Anderson, Angew. Chem. Int. Ed. 2007, 46, 3122-3125, https://doi.org/10.1002/anie.200604601.
A. C. Tsipis, C. E. Kefalidis, C. A. Tsipis, J. Am. Chem. Soc. 2008, 130, 9144-9155, https://doi.org/10.1021/ja802344z.
B. Peerless, A. Schmidt, Y. J. Franzke, S. Dehnen, Nature Chem. 2023, 15, 347-356, https://doi.org/10.1038/s41557-022-01099-5.
D. W. Szczepanik, M. Sola, ChemRxiv preimpresión 2023, https://doi.org/10.26434/chemrxiv-2023-dkvdg-v2.
K. Kaiser, L. M. Scriven, F. Schulz, P. Gawel, L. Gross, H. L.Anderson, Science 2019, 365, 1299-1301, https://doi.org/10.1126/science.aay1914.
G. V. Baryshnikov, R. R. Valiev, A. V. Kuklin, D. Sundholm, H. Agren, J. Phys. Chem. Lett. 2019, 10, 6701-6705, https://doi.org/10.1021/acs.jpclett.9b02815.
C. Dai, D. Chen, J. Zhu, Chem. Asian J. 2020, 15, 2187-2191, https://doi.org/10.1002/asia.202000528.
N. D. Charistos, A. Munoz-Castro, Phys. Chem. Chem. Phys.2020, 22, 9240-9249, https://doi.org/10.1039/D0CP01252A.
P. W. Fowler, N. Mizoguchi, D. E. Bean, R. W. A. Havenith, Chem. Eur. J. 2009, 15, 6964-6972, https://doi.org/10.1002/chem.200900322.
C. Pan, Z. Liu, ChemPhysChem 2025, 26, e202400912, https://doi.org/10.1002/cphc.202400912.
M. Sola, D. W. Szczepanik, Pure & Appl. Chem. 2025, 97, 1149-1157, https://doi.org/10.1515/pac-2025-0465.
M. Baranac-Stojanović, Chem. Asian J. 2025, 20, e202500295, https://doi.org/10.1002/asia.202500295.
Y.-H. Xu, W.-J. Tian, A. Munoz-Castro, G. Frenking, Z.-M. Sun, Science 2023, 382, 840-843, https://doi.org/10.1126/science.adj6491.
C.-C. Shu, D. W. Szczepanik, A. Munoz-Castro, M. Sola, Z.-M. Sun, J. Am. Chem. Soc. 2024, 146, 14166-14173, https://doi.org/10.1021/jacs.4c03024.
Y.-S. Huang, H.-L. Xu, W.-J. Tian, Z.-S. Li, S. Escayola, M. Sola, A. Munoz-Castro, Z.-M. Sun, J. Am. Chem. Soc. 2025, 147, 9407-9414, https://doi.org/10.1021/jacs.4c16401.
G. Binsch, Naturwissenschaften 1973, 60, 369-374, https://doi.org/10.1007/BF00602510.
A. T. Balaban, Pure & Appl. Chem. 1980, 52, 1409-1429, https://doi.org/10.1351/pac198052061409.
D. Lloyd, J. Chem. Inf. Comp. Sci. 1996, 36, 442-447, https://doi.org/10.1021/ci950158g.
T. M. Krygowski, M. K. Cyrański, Z. Czarnocki, G. Hafelinger, A. R. Katritzky, Tetrahedron 2000, 56, 1783-1796, https://doi.org/10.1016/S0040-4020(99)00979-5.
A. Stanger, Chem. Commun. 2009, 1939-1947, https://doi.org/10.1039/B816811C.
R. Hoffmann, Am. Sci. 2015, 103, 18-22, https://doi.org/10.1511/2015.112.18.
M. Sola, Front. Chem. 2017, 5, 22, https://doi.org/10.3389/fchem.2017.00022.
G. Merino, M. Sola, I. Fernandez, C. Foroutan-Nejad, P. Lazzeretti,G. Frenking, H. L. Anderson, D. Sundholm, F. P. Cossio, M. A. Petrukhina, J. Wu, J. I. Wu, A. Restrepo, Chem. Sci. 2023, 14,5569-5576, https://doi.org/10.1039/D2SC04998H.
I. Agranat, Struct. Chem. 2024, 35, 715-720, https://doi.org/10.1007/s11224-024-02328-y.
M. Baranac-Stojanović, Chemistry 2025, 7, 127, https://doi.org/10.3390/chemistry7040127.
H. Ottosson, Chem. Sci. 2023, 14, 5542-5544, https://doi.org/10.1039/D3SC90075D.
S. Escayola, Exploring the Boundaries of Aromaticity Through Computational Analysis of Excited States and Complex Molecular Topologies. Universitat de Girona, Girona, 2024.
M. Sola, F. M. Bickelhaupt, J. Chem. Educ. 2022, 99, 3497-3501, https://doi.org/10.1021/acs.jchemed.2c00523.
G. Frenking, A. Krapp, J. Comput. Chem. 2007, 28, 15-24, https://doi.org/10.1002/jcc.20543.
J. Grunenberg, Int. J. Quantum Chem. 2017, 117, e25359, https://doi.org/10.1002/qua.25359.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888, https://doi.org/10.1021/cr030088+.
J.-P. Dognon, C. Clavaguera, P. Pyykko, Angew. Chem. Int. Ed. 2007, 46, 1427-1430, https://doi.org/10.1002/anie.200604198.
M. Sola, Nature Chem. 2022, 14, 585-590, https://doi.org/10.1038/s41557-022-00961-w.
R. Breslow, Chem. Eng. News 1965, 43, 90-100, https://doi.org/10.1021/ar50072a001.
R. Breslow, Acc. Chem. Res. 1973, 6, 393-398, https://doi.org/10.1021/ar50072a001.
A. Soncini, P. W. Fowler, Chem. Phys. Lett. 2008, 450, 431-436, https://doi.org/10.1016/j.cplett.2007.11.053.
M. Mandado, A. M. Grana, I. Perez-Juste, J. Chem. Phys. 2008, 129, 164114, https://doi.org/10.1063/1.2999562.
R. Herges, Chem. Rev. 2006, 106, 4820-4842, https://doi.org/10.1021/cr0505425.
H. S. Rzepa, Chem. Rev. 2005, 105, 3697-3715, https://doi.org/10.1021/cr030092l.
D. P. Craig, N. L. Paddock, Nature 1958, 181, 1052-1053, https://doi.org/10.1038/1811052a0.
M. Rosenberg, C. Dahlstrand, K. Kilsa, H. Ottosson, Chem. Rev. 2014, 114, 5379-5425, https://doi.org/10.1021/cr300471v.
J. R. Platt, J. Chem. Phys. 1949, 17, 484-495, https://doi.org/10.1063/1.1747293.
O. El Bakouri, J. Poater, F. Feixas, M. Sola, Theor. Chem. Acc. 2016, 135, 205, https://doi.org/10.1007/s00214-016-1970-1.
M. I. Kay, Y. Okaya, D. E. Cox, Acta Cryst. B 1971, 27, 26-33, https://doi.org/10.1107/S0567740871001663.
M. Randić, Chem. Phys. Lett. 2014, 601, 1-5, https://doi.org/10.1016/j.cplett.2014.03.073.
G. Portella, J. Poater, M. Sola, J. Phys. Org. Chem. 2005, 18, 785-791, https://doi.org/10.1002/poc.938.
R. B. King, D. H. Rouvray, J. Am. Chem. Soc. 1977, 99, 7834-7840, https://doi.org/10.1021/ja00466a014.
J. Aihara, J. Am. Chem. Soc. 1978, 100, 3339-3342, https://doi.org/10.1021/ja00479a015.
O. El Bakouri, D. W. Szczepanik, K. Jorner, R. Ayub, P. Bultinck, M. Sola, H. Ottosson, J. Am. Chem. Soc. 2022, 144, 8560-8575, https://doi.org/10.1021/jacs.1c13478.
M. P. Pitt, M. Paskevicius, D. H. Brown, D. A. Sheppard, C. E. Buckley, J. Am. Chem. Soc. 2013, 135, 6930-6941, https://doi.org/10.1021/ja400131b.
A. R. Pitochelli, F. M. Hawthorne, J. Am. Chem. Soc. 1960, 82, 3228-3229, https://doi.org/10.1021/ja01497a069.
K. Wade, J. Chem. Soc. D: Chem. Commun. 1971, 792-793, https://doi.org/10.1039/C29710000792.
D. M. P. Mingos, Nature Phys. Sci. 1972, 236, 99-102, https://doi.org/10.1038/physci236099a0.
C. Liu, I. A. Popov, Z. Chen, A. I. Boldyrev, Z.-M. Sun, Chem. Eur. J. 2018, 24, 14583-14597, https://doi.org/10.1002/chem.201801715.
J. Poater, M. Sola, Chem. Commun. 2011, 47, 11647-11649, https://doi.org/10.1039/c1cc14958j.
N. Cohen, S. W. Benson, Chem. Rev. 1993, 93, 2419-2438, https://doi.org/10.1021/cr00023a005.
T. B. Tai, R. W. A. Havenith, J. L. Teunissen, A. R. Dok, S. D. Hallaert, M. T. Nguyen, A. Ceulemans, Inorg. Chem. 2013, 52, 10595-10600, https://doi.org/10.1021/ic401596s.
L. V. Duong, H. T. Pham, N. M. Tam, M. T. Nguyen, Phys. Chem. Chem. Phys. 2014, 16, 19470-19478, https://doi.org/10.1039/C4CP01996B.
O. El Bakouri, M. Duran, J. Poater, F. Feixas, M. Sola, Phys.Chem. Chem. Phys. 2016, 18, 11700-11706, https://doi.org/10.1039/C5CP07011B.
P. Cui, H.-S. Hu, B. Zhao, J. T. Miller, P. Cheng, J. Li, Nature Commun. 2015, 6, 6331, https://doi.org/10.1038/ncomms7331.
M. Sola, en Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, vol. 2, Elsevier, 2023, pp. 189-201, https://doi.org/10.1016/B978-0-12-821978-2.00061-1 .
J. Poater, I. Garcia-Cruz, F. Illas, M. Sola, Phys. Chem. Chem. Phys. 2004, 6, 314-318, https://doi.org/10.1039/B309965B.
W. J. Hehre, R. Ditchfiel, L. Radom, J. A. Pople, J. Am. Chem. Soc. 1970, 92, 4796-4801, https://doi.org/10.1021/ja00719a006.
J. A. Pople, L. Radom, W. J. Hehre, J. Am. Chem. Soc. 1971,93, 289-300, https://doi.org/10.1021/ja00731a001.
P. George, M. Trachtman, C. W. Bock, A. M. Brett, J. Chem. Soc., Perkin Trans. 2 1976, 1222-1227, https://doi.org/10.1039/P29760001222.
P. George, M. Trachtman, B. A. M., C. W. Bock, J. Chem. Soc., Perkin Trans. 2 1977, 1036-1047, https://doi.org/10.1039/P29770001036.
M. K. Cyrański, P. v. R. Schleyer, T. M. Krygowski, H. Jiao, G. Hohlneicher, Tetrahedron 2003, 59, 1657-1665, https://doi.org/10.1016/S0040-4020(03)00137-6.
M. K. Cyrański, Chem. Rev. 2005, 105, 3773-3811, https://doi.org/10.1021/cr0300845.
M. D. Wodrich, C. S. Wannere, Y. Mo, P. D. Jarowski, K. N. Houk, P. v. R. Schleyer, Chem. Eur. J. 2007, 13, 7731-7744, https://doi.org/10.1002/chem.200700602.
A. Ciesielski, D. K. Stepień, M. A. Dobrowolski, Ł. Dobrzycki, M. K. Cyrański, Chem. Commun. 2012, 48, 10129-10131, https://doi.org/10.1039/C2CC33974A.
P. v. R. Schleyer, F. Puhlhofer, Org. Lett. 2002, 4, 2873-2876, https://doi.org/10.1021/ol0261332.
M. Sola, A. I. Boldyrev, M. C. Cyrański, T. M. Krygowski, G. Merino, Aromaticity and Antiaromaticity: Concepts and Applications, Wiley-VCH, New York, 2023, https://doi.org/10.1002/9781119085928.
F. Feixas, E. Matito, J. Poater, M. Sola, Chem. Soc. Rev. 2015, 44, 6434-6451, http://doi.org/10.1039/C5CS00066A.
E. Matito, M. Duran, M. Sola, J. Chem. Phys. 2005, 122, 014109, https://doi.org/10.1063/1.1824895.
X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A 1999, 103, 304-314, https://doi.org/10.1021/jp983362q.
J. Poater, M. Sola, M. Duran, X. Fradera, Theor. Chem. Acc. 2002, 107, 362-371, https://doi.org/10.1007/s00214-002-0356-8.
P. Bultinck, R. Ponec, S. Van Damme, J. Phys. Org. Chem. 2005, 18, 706-718, https://doi.org/10.1002/poc.922.
J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839-3842, https://doi.org/10.1016/S0040-4039(01)94175-9.
T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385-1419, https://doi.org/10.1021/cr990326u.
K. K. Zborowski, I. Alkorta, J. Elguero, L. M. Proniewicz, Struct. Chem. 2012, 23, 595-600, https://doi.org/10.1007/s11224-011-9907-8.
K. K. Zborowski, I. Alkorta, J. Elguero, L. M. Proniewicz, Struct. Chem. 2013, 24, 543-548, https://doi.org/10.1007/s11224-012-0109-9.
R. H. Mitchell, Chem. Rev. 2001, 101, 1301-1315, https://doi.org/10.1021/cr990359.
C. Corminboeuf, T. Heine, G. Seifert, P. v. R. Schleyer, J. Weber, Phys. Chem. Chem. Phys. 2004, 6, 273-276, https://doi.org/10.1039/B313383B.
H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863-866, https://doi.org/10.1021/ol0529546.
P. Lazzeretti, Prog. Nucl. Magn. Res. Spectr. 2000, 36, 1-88, https://doi.org/10.1016/S0079-6565(99)00021-7.
P. Lazzeretti, Phys. Chem. Chem. Phys. 2004, 6, 217-223, https://doi.org/10.1039/B311178D.
R. Islas, G. Martinez-Guajardo, J. O. C. Jimenez-Halla, M. Sola, G. Merino, J. Chem. Theory Comput. 2010, 6, 1131-1135, https://doi.org/10.1021/ct100098c.
J. Aihara, J. Am. Chem. Soc. 2006, 128, 2873-2879, https://doi.org/10.1021/ja056430c.
F. Feixas, E. Matito, J. Poater, M. Sola, J. Comput. Chem. 2008, 29, 1543-1554, https://doi.org/10.1002/jcc.20914.
F. Feixas, J. O. C. Jimenez-Halla, E. Matito, J. Poater, M. Sola, J. Chem. Theory Comput. 2010, 6, 1118-1130, https://doi.org/10.1021/ct100034p.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Anales de Química de la RSEQ

