Aromaticidad molecular
PDF

Palabras clave

Hückel
Baird
Möbius
Sexteto Π de Clar
Hirsch
Visualizaciones
  • Resumen 50
  • PDF 43

Resumen

La aromaticidad molecular, como tantas otras nociones básicas en química, no es un concepto bien definido debido a su naturaleza no observable. A pesar de su carácter impreciso, es un concepto de gran importancia. En esta revisión, analizamos primero y de forma breve la historia de la aromaticidad, su naturaleza cuántica, y demostramos que, a pesar de la falta de una definición precisa, existen varias reglas de conteo de electrones muy simples que siguen un gran número de compuestos aromáticos orgánicos e inorgánicos. Finalmente, presentamos los tipos principales de aromaticidad y analizamos las formas más habituales de cuantificar la aromaticidad, destacando el hecho que los diferentes descriptores no siempre producen los mismos resultados.

https://doi.org/10.62534/rseq.aq.2086
PDF

Citas

M. Faraday, Philos. Trans. R. Soc. London 1825, 115, 440-446, https://doi.org/10.1098/rstl.1825.0022.

E. Mitscherlich, Ann. Pharm. 1834, 9, 39-48, https://doi.org/10.1002/jlac.18340090103.

A. W. Hofmann, Proc. R. Soc. Lond. 1856, 8, 1-3, https://doi.org/10.1098/rspl.1856.0002.

A. Kekule, Bull. Soc. Chim. Fr. (Paris) 1865, 3, 98-110.

T. Anderson, Trans. R. Soc. Edinburgh 1868, 25, 205-216, https://doi.org/10.1039/JS8692200406.

R. Willstatter, E. Waser, Ber. Dtsch Chem. Ges. 1911, 44, 3423-3445, https://doi.org/10.1002/cber.191104403216.

A. Stock, E. Pohland, Ber. Dtsch Chem. Ges. 1926, 59, 2215-2223, https://doi.org/10.1002/cber.19260590907.

K. Lonsdale, Trans. Faraday Soc. 1929, 25, 352-366, https://doi.org/10.1039/TF9292500352.

E. Huckel, Z. Physik 1931, 70, 204-286, https://doi.org/10.1007/BF01339530.

E. Huckel, Z. Physik 1931, 72, 310-337, https://doi.org/10.1007/BF01341953.

E. Huckel, Z. Physik 1932, 76, 628-648, https://doi.org/10.1007/BF01341936.

E. Huckel, Z. Elektrochemie 1937, 43, 827-849, https://doi.org/10.1002/bbpc.19370431016.

W. v. E. Doering, F. L. Detert, J. Am. Chem. Soc. 1951, 73, 876-877, https://doi.org/10.1021/ja01146a537.

E. Wigner, F. Seitz, Phys. Rev. 1933, 43, 804-810, https://doi.org/10.1103/PhysRev.43.804.

Z. Luo, A. W. Castleman, Acc. Chem. Res. 2014, 47, 2931-2940, https://doi.org/10.1021/ar5001583.

J. Poater, M. Sola, Chem. Commun. 2019, 55, 5559-5562, https://doi.org/10.1039/C9CC02067E.

M. G. Evans, E. Warhust, Trans. Faraday Soc 1938, 34, 614-624, https://doi.org/10.1039/TF9383400614.

W. v. E. Doering, L. H. Knox, J. Am. Chem. Soc. 1954, 76, 3203-3206, https://doi.org/10.1021/ja01641a027.

C. E. Johnson, F. A. Bovey, J. Chem. Phys. 1958, 29, 1012-1014, https://doi.org/10.1063/1.1744645.

H. C. Longuet-Higgins, L. Salem, Proc. Roy. Soc. A 1959, 251,172-185.

S. Winstein, J. Am. Chem. Soc. 1959, 81, 6524-6525, https://doi.org/10.1021/ja01533a052.

W. N. Lipscomb, A. R. Pitochelli, M. F. Hawthorne, J. Am. Chem. Soc. 1959, 81, 5833-5834, https://doi.org/10.1021/ja01530a073.

W. H. Knoth, H. C. Miller, D. C. England, G. W. Parshall, E. L. Muetterties, J. Am. Chem. Soc. 1962, 84, 1056-1057, https://doi.org/10.1021/ja00865a040.

E. Heilbronner, Tetrahedron Lett. 1964, 5, 1923-1928, https://doi.org/10.1016/S0040-4039(01)89474-0.

D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 2003, 426,819-821, https://doi.org/10.1038/nature02224.

E. Clar, The Aromatic Sextet, Wiley, New York, 1972, https://doi.org/10.1002/zfch.19730130531.

M. Sola, Front. Chem. 2013, 1, 22, https://doi.org/10.3389/fchem.2013.00022.

C. Glidewell, D. Lloyd, Tetrahedron 1984, 40, 4455-4472, https://doi.org/10.1016/S0040-4020(01)98821-0.

N. C. Baird, J. Am. Chem. Soc. 1972, 94, 4941-4948, https://doi.org/10.1021/ja00769a025.

R. Breslow, H. W. Chang, R. Hill, E. Wasserman, J. Am. Chem. Soc. 1967, 89, 1112-1119, https://doi.org/10.1021/ja00981a015.

M. Saunders, R. Berger, A. Jaffe, J. M. McBride, J. O’Neill, R. Breslow, J. M. Hoffmann Jr., C. Perchonock, E. Wasserman, R.S. Hutton, V. J. Huck, J. Am. Chem. Soc. 1973, 95, 3017-3018, https://doi.org/10.1021/ja00790a049.

M. J. S. Dewar, Bull. Soc. Chim. Belg. 1979, 88, 957-967, https://doi.org/10.1002/bscb.19790881201.

J. Chandrasekhar, E. D. Jemmis, P. v. R. Schleyer, Tetrahedron Lett. 1979, 20, 3707-3710, https://doi.org/10.1016/S0040-4039(01)95503-0.

G. P. Elliott, W. R. Roper, J. M. Waters, J. Chem. Soc., Chem. Commun. 1982, 811-813, https://doi.org/10.1039/C39820000811.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162-163, https://doi.org/10.1038/318162a0.

A. Hirsch, Z. Chen, H. Jiao, Angew. Chem. Int. Ed. 2000, 39, 3915-3917, https://doi.org/10.1002/1521-3773(20001103)39:21<3915::AID-ANIE3915>3.0.CO;2-O.

P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318, https://doi.org/10.1021/ja960582d.

M. Buhl, C. van Wullen, Chem. Phys. Lett. 1995, 247, 63-68, https://doi.org/10.1016/0009-2614(95)01193-6.

M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos, A. P. de Figueiredo, Phys. Chem. Chem. Phys. 2000, 2, 3381-3392, https://doi.org/10.1039/B002009P.

A. E. Kuznetsov, K. A. Birch, A. I. Boldyrev, H.-J. Zhai, L.-S. Wang, Science 2003, 300, 622-625, https://doi.org/10.1126/science.1082477.

H.-J. Zhai, B. B. Averkiev, D. Y. Zubarev, L.-S. Wang, A. I. Boldyrev, Angew. Chem. Int. Ed. 2007, 46, 4277-4280, https://doi.org/10.1002/anie.200700442.

M. Hoffmann, C. J. Wilson, B. Odell, H. L. Anderson, Angew. Chem. Int. Ed. 2007, 46, 3122-3125, https://doi.org/10.1002/anie.200604601.

A. C. Tsipis, C. E. Kefalidis, C. A. Tsipis, J. Am. Chem. Soc. 2008, 130, 9144-9155, https://doi.org/10.1021/ja802344z.

B. Peerless, A. Schmidt, Y. J. Franzke, S. Dehnen, Nature Chem. 2023, 15, 347-356, https://doi.org/10.1038/s41557-022-01099-5.

D. W. Szczepanik, M. Sola, ChemRxiv preimpresión 2023, https://doi.org/10.26434/chemrxiv-2023-dkvdg-v2.

K. Kaiser, L. M. Scriven, F. Schulz, P. Gawel, L. Gross, H. L.Anderson, Science 2019, 365, 1299-1301, https://doi.org/10.1126/science.aay1914.

G. V. Baryshnikov, R. R. Valiev, A. V. Kuklin, D. Sundholm, H. Agren, J. Phys. Chem. Lett. 2019, 10, 6701-6705, https://doi.org/10.1021/acs.jpclett.9b02815.

C. Dai, D. Chen, J. Zhu, Chem. Asian J. 2020, 15, 2187-2191, https://doi.org/10.1002/asia.202000528.

N. D. Charistos, A. Munoz-Castro, Phys. Chem. Chem. Phys.2020, 22, 9240-9249, https://doi.org/10.1039/D0CP01252A.

P. W. Fowler, N. Mizoguchi, D. E. Bean, R. W. A. Havenith, Chem. Eur. J. 2009, 15, 6964-6972, https://doi.org/10.1002/chem.200900322.

C. Pan, Z. Liu, ChemPhysChem 2025, 26, e202400912, https://doi.org/10.1002/cphc.202400912.

M. Sola, D. W. Szczepanik, Pure & Appl. Chem. 2025, 97, 1149-1157, https://doi.org/10.1515/pac-2025-0465.

M. Baranac-Stojanović, Chem. Asian J. 2025, 20, e202500295, https://doi.org/10.1002/asia.202500295.

Y.-H. Xu, W.-J. Tian, A. Munoz-Castro, G. Frenking, Z.-M. Sun, Science 2023, 382, 840-843, https://doi.org/10.1126/science.adj6491.

C.-C. Shu, D. W. Szczepanik, A. Munoz-Castro, M. Sola, Z.-M. Sun, J. Am. Chem. Soc. 2024, 146, 14166-14173, https://doi.org/10.1021/jacs.4c03024.

Y.-S. Huang, H.-L. Xu, W.-J. Tian, Z.-S. Li, S. Escayola, M. Sola, A. Munoz-Castro, Z.-M. Sun, J. Am. Chem. Soc. 2025, 147, 9407-9414, https://doi.org/10.1021/jacs.4c16401.

G. Binsch, Naturwissenschaften 1973, 60, 369-374, https://doi.org/10.1007/BF00602510.

A. T. Balaban, Pure & Appl. Chem. 1980, 52, 1409-1429, https://doi.org/10.1351/pac198052061409.

D. Lloyd, J. Chem. Inf. Comp. Sci. 1996, 36, 442-447, https://doi.org/10.1021/ci950158g.

T. M. Krygowski, M. K. Cyrański, Z. Czarnocki, G. Hafelinger, A. R. Katritzky, Tetrahedron 2000, 56, 1783-1796, https://doi.org/10.1016/S0040-4020(99)00979-5.

A. Stanger, Chem. Commun. 2009, 1939-1947, https://doi.org/10.1039/B816811C.

R. Hoffmann, Am. Sci. 2015, 103, 18-22, https://doi.org/10.1511/2015.112.18.

M. Sola, Front. Chem. 2017, 5, 22, https://doi.org/10.3389/fchem.2017.00022.

G. Merino, M. Sola, I. Fernandez, C. Foroutan-Nejad, P. Lazzeretti,G. Frenking, H. L. Anderson, D. Sundholm, F. P. Cossio, M. A. Petrukhina, J. Wu, J. I. Wu, A. Restrepo, Chem. Sci. 2023, 14,5569-5576, https://doi.org/10.1039/D2SC04998H.

I. Agranat, Struct. Chem. 2024, 35, 715-720, https://doi.org/10.1007/s11224-024-02328-y.

M. Baranac-Stojanović, Chemistry 2025, 7, 127, https://doi.org/10.3390/chemistry7040127.

H. Ottosson, Chem. Sci. 2023, 14, 5542-5544, https://doi.org/10.1039/D3SC90075D.

S. Escayola, Exploring the Boundaries of Aromaticity Through Computational Analysis of Excited States and Complex Molecular Topologies. Universitat de Girona, Girona, 2024.

M. Sola, F. M. Bickelhaupt, J. Chem. Educ. 2022, 99, 3497-3501, https://doi.org/10.1021/acs.jchemed.2c00523.

G. Frenking, A. Krapp, J. Comput. Chem. 2007, 28, 15-24, https://doi.org/10.1002/jcc.20543.

J. Grunenberg, Int. J. Quantum Chem. 2017, 117, e25359, https://doi.org/10.1002/qua.25359.

Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888, https://doi.org/10.1021/cr030088+.

J.-P. Dognon, C. Clavaguera, P. Pyykko, Angew. Chem. Int. Ed. 2007, 46, 1427-1430, https://doi.org/10.1002/anie.200604198.

M. Sola, Nature Chem. 2022, 14, 585-590, https://doi.org/10.1038/s41557-022-00961-w.

R. Breslow, Chem. Eng. News 1965, 43, 90-100, https://doi.org/10.1021/ar50072a001.

R. Breslow, Acc. Chem. Res. 1973, 6, 393-398, https://doi.org/10.1021/ar50072a001.

A. Soncini, P. W. Fowler, Chem. Phys. Lett. 2008, 450, 431-436, https://doi.org/10.1016/j.cplett.2007.11.053.

M. Mandado, A. M. Grana, I. Perez-Juste, J. Chem. Phys. 2008, 129, 164114, https://doi.org/10.1063/1.2999562.

R. Herges, Chem. Rev. 2006, 106, 4820-4842, https://doi.org/10.1021/cr0505425.

H. S. Rzepa, Chem. Rev. 2005, 105, 3697-3715, https://doi.org/10.1021/cr030092l.

D. P. Craig, N. L. Paddock, Nature 1958, 181, 1052-1053, https://doi.org/10.1038/1811052a0.

M. Rosenberg, C. Dahlstrand, K. Kilsa, H. Ottosson, Chem. Rev. 2014, 114, 5379-5425, https://doi.org/10.1021/cr300471v.

J. R. Platt, J. Chem. Phys. 1949, 17, 484-495, https://doi.org/10.1063/1.1747293.

O. El Bakouri, J. Poater, F. Feixas, M. Sola, Theor. Chem. Acc. 2016, 135, 205, https://doi.org/10.1007/s00214-016-1970-1.

M. I. Kay, Y. Okaya, D. E. Cox, Acta Cryst. B 1971, 27, 26-33, https://doi.org/10.1107/S0567740871001663.

M. Randić, Chem. Phys. Lett. 2014, 601, 1-5, https://doi.org/10.1016/j.cplett.2014.03.073.

G. Portella, J. Poater, M. Sola, J. Phys. Org. Chem. 2005, 18, 785-791, https://doi.org/10.1002/poc.938.

R. B. King, D. H. Rouvray, J. Am. Chem. Soc. 1977, 99, 7834-7840, https://doi.org/10.1021/ja00466a014.

J. Aihara, J. Am. Chem. Soc. 1978, 100, 3339-3342, https://doi.org/10.1021/ja00479a015.

O. El Bakouri, D. W. Szczepanik, K. Jorner, R. Ayub, P. Bultinck, M. Sola, H. Ottosson, J. Am. Chem. Soc. 2022, 144, 8560-8575, https://doi.org/10.1021/jacs.1c13478.

M. P. Pitt, M. Paskevicius, D. H. Brown, D. A. Sheppard, C. E. Buckley, J. Am. Chem. Soc. 2013, 135, 6930-6941, https://doi.org/10.1021/ja400131b.

A. R. Pitochelli, F. M. Hawthorne, J. Am. Chem. Soc. 1960, 82, 3228-3229, https://doi.org/10.1021/ja01497a069.

K. Wade, J. Chem. Soc. D: Chem. Commun. 1971, 792-793, https://doi.org/10.1039/C29710000792.

D. M. P. Mingos, Nature Phys. Sci. 1972, 236, 99-102, https://doi.org/10.1038/physci236099a0.

C. Liu, I. A. Popov, Z. Chen, A. I. Boldyrev, Z.-M. Sun, Chem. Eur. J. 2018, 24, 14583-14597, https://doi.org/10.1002/chem.201801715.

J. Poater, M. Sola, Chem. Commun. 2011, 47, 11647-11649, https://doi.org/10.1039/c1cc14958j.

N. Cohen, S. W. Benson, Chem. Rev. 1993, 93, 2419-2438, https://doi.org/10.1021/cr00023a005.

T. B. Tai, R. W. A. Havenith, J. L. Teunissen, A. R. Dok, S. D. Hallaert, M. T. Nguyen, A. Ceulemans, Inorg. Chem. 2013, 52, 10595-10600, https://doi.org/10.1021/ic401596s.

L. V. Duong, H. T. Pham, N. M. Tam, M. T. Nguyen, Phys. Chem. Chem. Phys. 2014, 16, 19470-19478, https://doi.org/10.1039/C4CP01996B.

O. El Bakouri, M. Duran, J. Poater, F. Feixas, M. Sola, Phys.Chem. Chem. Phys. 2016, 18, 11700-11706, https://doi.org/10.1039/C5CP07011B.

P. Cui, H.-S. Hu, B. Zhao, J. T. Miller, P. Cheng, J. Li, Nature Commun. 2015, 6, 6331, https://doi.org/10.1038/ncomms7331.

M. Sola, en Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, vol. 2, Elsevier, 2023, pp. 189-201, https://doi.org/10.1016/B978-0-12-821978-2.00061-1 .

J. Poater, I. Garcia-Cruz, F. Illas, M. Sola, Phys. Chem. Chem. Phys. 2004, 6, 314-318, https://doi.org/10.1039/B309965B.

W. J. Hehre, R. Ditchfiel, L. Radom, J. A. Pople, J. Am. Chem. Soc. 1970, 92, 4796-4801, https://doi.org/10.1021/ja00719a006.

J. A. Pople, L. Radom, W. J. Hehre, J. Am. Chem. Soc. 1971,93, 289-300, https://doi.org/10.1021/ja00731a001.

P. George, M. Trachtman, C. W. Bock, A. M. Brett, J. Chem. Soc., Perkin Trans. 2 1976, 1222-1227, https://doi.org/10.1039/P29760001222.

P. George, M. Trachtman, B. A. M., C. W. Bock, J. Chem. Soc., Perkin Trans. 2 1977, 1036-1047, https://doi.org/10.1039/P29770001036.

M. K. Cyrański, P. v. R. Schleyer, T. M. Krygowski, H. Jiao, G. Hohlneicher, Tetrahedron 2003, 59, 1657-1665, https://doi.org/10.1016/S0040-4020(03)00137-6.

M. K. Cyrański, Chem. Rev. 2005, 105, 3773-3811, https://doi.org/10.1021/cr0300845.

M. D. Wodrich, C. S. Wannere, Y. Mo, P. D. Jarowski, K. N. Houk, P. v. R. Schleyer, Chem. Eur. J. 2007, 13, 7731-7744, https://doi.org/10.1002/chem.200700602.

A. Ciesielski, D. K. Stepień, M. A. Dobrowolski, Ł. Dobrzycki, M. K. Cyrański, Chem. Commun. 2012, 48, 10129-10131, https://doi.org/10.1039/C2CC33974A.

P. v. R. Schleyer, F. Puhlhofer, Org. Lett. 2002, 4, 2873-2876, https://doi.org/10.1021/ol0261332.

M. Sola, A. I. Boldyrev, M. C. Cyrański, T. M. Krygowski, G. Merino, Aromaticity and Antiaromaticity: Concepts and Applications, Wiley-VCH, New York, 2023, https://doi.org/10.1002/9781119085928.

F. Feixas, E. Matito, J. Poater, M. Sola, Chem. Soc. Rev. 2015, 44, 6434-6451, http://doi.org/10.1039/C5CS00066A.

E. Matito, M. Duran, M. Sola, J. Chem. Phys. 2005, 122, 014109, https://doi.org/10.1063/1.1824895.

X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A 1999, 103, 304-314, https://doi.org/10.1021/jp983362q.

J. Poater, M. Sola, M. Duran, X. Fradera, Theor. Chem. Acc. 2002, 107, 362-371, https://doi.org/10.1007/s00214-002-0356-8.

P. Bultinck, R. Ponec, S. Van Damme, J. Phys. Org. Chem. 2005, 18, 706-718, https://doi.org/10.1002/poc.922.

J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839-3842, https://doi.org/10.1016/S0040-4039(01)94175-9.

T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385-1419, https://doi.org/10.1021/cr990326u.

K. K. Zborowski, I. Alkorta, J. Elguero, L. M. Proniewicz, Struct. Chem. 2012, 23, 595-600, https://doi.org/10.1007/s11224-011-9907-8.

K. K. Zborowski, I. Alkorta, J. Elguero, L. M. Proniewicz, Struct. Chem. 2013, 24, 543-548, https://doi.org/10.1007/s11224-012-0109-9.

R. H. Mitchell, Chem. Rev. 2001, 101, 1301-1315, https://doi.org/10.1021/cr990359.

C. Corminboeuf, T. Heine, G. Seifert, P. v. R. Schleyer, J. Weber, Phys. Chem. Chem. Phys. 2004, 6, 273-276, https://doi.org/10.1039/B313383B.

H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863-866, https://doi.org/10.1021/ol0529546.

P. Lazzeretti, Prog. Nucl. Magn. Res. Spectr. 2000, 36, 1-88, https://doi.org/10.1016/S0079-6565(99)00021-7.

P. Lazzeretti, Phys. Chem. Chem. Phys. 2004, 6, 217-223, https://doi.org/10.1039/B311178D.

R. Islas, G. Martinez-Guajardo, J. O. C. Jimenez-Halla, M. Sola, G. Merino, J. Chem. Theory Comput. 2010, 6, 1131-1135, https://doi.org/10.1021/ct100098c.

J. Aihara, J. Am. Chem. Soc. 2006, 128, 2873-2879, https://doi.org/10.1021/ja056430c.

F. Feixas, E. Matito, J. Poater, M. Sola, J. Comput. Chem. 2008, 29, 1543-1554, https://doi.org/10.1002/jcc.20914.

F. Feixas, J. O. C. Jimenez-Halla, E. Matito, J. Poater, M. Sola, J. Chem. Theory Comput. 2010, 6, 1118-1130, https://doi.org/10.1021/ct100034p.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Anales de Química de la RSEQ